M.Sc. Part I, Information Technology Syllabus

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: Master's in Science (M. Sc.)

Information Technology

SYLLABUS (Approved in the Academic council meeting dated 27/06/2023)

M. Sc. Information Technology

Revised as per NEP 2020 Choice Based Credit System (60:40) w.e.f. Academic Year 2023-2024 MASTER'S IN SCIENCE (M. Sc.)

1

SR. NO.	After completion of B.Sc. program students will acquire	Graduate Attribute		
PO1	The knowledge of the disciplines and in-depth and	Disciplinary		
	extensive knowledge, understanding and skills in a specific field of interest.	knowledge		
PO2	An ability to develop and conduct experiments, analyse, and interpret data and use scientific judgment to draw conclusions	Scientific reasoning		
PO3	An ability to use current technology, and modern tools necessary for creation, analysis, dissemination of information.	Digital literacy		
PO4	Innovative, professional, and entrepreneurial skills needed in various disciplines of science.	Life-long learning		
PO5	An ability to achieve high order communication skills.	Communication skills		
PO6	An ability to collect, analyse and evaluate information and ideas and apply them in problem solving using conventional as well as modern approaches	Problem solving		
PO7	A sense of social responsibility; intellectual and practical skills and demonstration of ability to apply it in real-world settings.	Reflective thinking		
PO8	An ability to engage in independent and life-long learning through openness, curiosity, and a desire to meet new challenges.	Life-long learning		
PO9	A capacity to relate, collaborate, and lead others, and to exchange views and ideas to work in a team to achieve desired outcomes	Teamwork		
PO10	An ability to function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Leadership		
PO11	An ability to understanding values, ethics, and morality in a multidisciplinary context.	Moral and ethical awareness		

Programme Outcomes

	After completing the programme in Information Technology, Student will be able to:
PSO1	Apply IT in the field of Data Science, AI, Networking, Security and Cloud Computing.
PSO2	Design solutions for complex IT problems.
PSO3	Develop research, investigation skills and achieve professional competency in the field of I.T.

Program Specific Outcomes

Preamble:

The M.Sc. Information Technology programme is started with an aim to make the learners employable and impart industry oriented training.

The main objectives of the course are:

- To think analytically, creatively and critically in developing robust, extensible and highly maintainable technological solutions to simple and complex problems.
- To apply their knowledge and skills to be employed and excel in IT professional careers and/or to continue their education in IT and/or related post graduate programmes.
- To be capable of managing complex IT projects with consideration of the human, financial and environmental factors.
- To work effectively as a part of a team to achieve a common stated goal.
- To adhere to the highest standards of ethics, including relevant industry and organizational codes of conduct.
- To communicate effectively with a range of audiences both technical and non-technical.
- To develop an aptitude to engage in continuing professional development.

Examination Scheme

Choice Based Credit System (CBCS)

Revised Scheme of Examination

The performance of the learners shall be evaluated into two components. The learner's Performance shall be assessed by Internal Assessment with 40% marks in the first component by conducting the Semester End Examinations with 60% marks in the second component. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

A) Internal Assessment: 40 %

40 Marks

Sr. No.	Particular		Marks
01	One periodical class test examination to be		20 Marks
02	conducted in the given semesterOne case study/ project with presentation based on curriculum to be assessed by the teacher concerned		15 Marks
	Presentation	10 Marks	
	Written Document	05 Marks	
03	Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibit of leadership qualities in organizing related academic activities		05 Marks

- ✤ Maximum Marks: 20
- Duration: 40 Minutes

Particular	Marks
Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each)	10 Marks
Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

Question Paper Pattern for Semester End Examination

• Duration: The examination shall be of 2.5 hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be five questions each of 12 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

> Passing Standard

The learners to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Sr. No	Particular		Marks
	Practical		
	Practical Question	40 Marks	
01	Journal	5 Marks	50 Marks
	Viva	5 Marks	

Question Paper Pattern for Practical Examination

Sr. No.	Heading	Particulars
<u>1</u>	Title of Course Eligibility for Admission	Information Technology(a) Student securing minimum 45% marks at the three years B.Sc. (IT) degree in Information Technology of
3	Passing marks	40%
4	Ordinances/Regulations (if any)	
5	No. of Semesters	Two
6	Level	P.G.
7	Pattern	Semester (60:40)
8 9	Status To be implemented from Academic year	New 2023-2024

Choice Based Credit System (CBCS) M. Sc. Information Technology Syllabus To be implemented from the Academic year 2023-2024

No. of Courses	Semester I	Credits	No. of Courses	Semester II	Credits
А	Discipline Specific Course (Majo	r)	Α	Discipline Specific Course (Major)	
1	Data Science	04	1	Big Data Analytics	04
2	Image processing	04	2	Modern Networking	04
3	Soft Computing Techniques	04	3	Natural Language Processing	04
4	Practical : Practical of Data Science + Practical of Image Processing	02	4	Practical: Practical of Big Data Analytics + Practical of Modern Networking	02
В	Discipline Specific Course (Elective) (Students will select any 1 out of 2)		В	Discipline Specific Course (Elective) (Students will select any 1 out of 2)	
5	Cloud Computing	02	5	Microservices Architecture	02
5	Ethical Hacking	02	5	Data Security	02
6	Practical: Practical of Cloud Computing + Practical of Soft Computing Technique	02	6	Practical : Practical of Microservices Architecture + Practical of Natural Language Processing	02
С	Discipline Specific Course(Minor	r)	С	Discipline Specific Course(Min	nor)
7	Research Methodology	04		-	
			D	<i>OJT/FP/CEP/RP</i>	
			7	On Job Training/ Research Project	04
	Total Credits	22		Total Credits	22

SEMESTER I

Course	Course Type	Course Title	Credit
Code			
PIT1DST	Major Subject I	Data Science	04
PIT1IPT	Major Subject II	Image Processing	04
PIT1SCT	Major Subject III	Soft Computing Techniques	04
PIT1PR1	Major Practical	Practical : Practical of Data Science +	02
		Practical of Image Processing	02
PIT1CCT	Elective 1	Cloud Computing	02
PIT1EHT	Elective 2	Ethical Hacking	
PIT1PR2	Elective Practical	Practical: Practical of Cloud Computing	
		+ Practical of Soft Computing	02
		Techniques	
PIT1RMT	Minor Subject	Research Methodology	04
		Total Credits	22

Choice Based Credit System (CBCS) M. Sc. Information Technology Syllabus To be implemented from the Academic year 2023-2024 SEMESTER II

Course	Course Type	Course Title	Credit
Code			
PIT2BDA	Major Subject I	Big Data Analytics	04
PIT2MNT	Major Subject II	Modern Networking	04
PIT2NLT	Major Subject III	Natural Language Processing	04
PIT2PR1	Major Subject II	Practical: Practical of Big Data Analytics +	02
	Practical	Practical of Modern Networking	02
PIT2MAT	Elective I	Microservices Architecture	02
PIT2DST	Elective II	Data Security	
PIT2PR2	Elective Practical	Practical : Practical of Microservices	
		Architecture + Practical of Natural Language	02
		Processing	
PIT2OJT	OJT/RP	On Job Training / Research Project	04
		Total Credits	22

Semester I Major I

Course Description: M.Sc. (Information Technology)		
Semester	Ι	
Course Name	Data Science	
Course Code	PIT1DST	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	Develop in depth understanding of the key technologies in data
	science and business analytics: data mining, machine learning,
	visualization techniques, predictive modeling, and statistics

Course Outcomes	After completing the course, Student will be able to:
	 Explain layered framework and technology stack in data science.
	2) Elaborate management layers in data science.
	3) Explain assess supersteps in data science.
	4) Utilize transform and report supersteps.

Module/ Unit	Course Description	Hrs.
Ι	 Data Science Technology Stack: Data Science Storage Tools, Data Lake, Data Vault, Data Science Processing Tools, Spark, Mesos, Akka, Cassandra, Kafka, Elastic Search, R ,Scala, Python, MQTT. Layered Framework: Definition of Data Science Framework, Cross Industry Standard Process for Data Mining (CRISP-DM), Homogeneous Ontology for Recursive Uniform Schema, The Top 	15hrs

M.Sc. Part I. Information Technology Syllabus

	Layers of a Layered Framework, Layered Framework for High-Level	
	Data Science and Engineering, Business Layer, Utility Layer:	
	~	
	Three Management Layers: Operational Management Layer,	
	Processing-Stream Definition and Management, Audit, Balance, and	
	Control Layer, Balance, Yoke Solution, Cause-and-Effect, Analysis	
	System, Functional Layer, Data Science Process.	
II	Retrieve Superstep : Data Lakes, Data Swamps, Training the Trainer	15hrs
	Model, Understanding the Business Dynamics of the Data Lake,	
	Actionable Business Knowledge	
	from Data Lakes, Engineering a Practical Retrieve Superstep,	
	Connecting to Other Data	
	Sources.	
	Assess Superstep: Assess Superstep, Errors, Analysis of Data,	
	Practical Actions, Engineering a Practical Assess Superstep,	
III	Process Superstep : Data Vault, Time-Person-Object-Location-	15hrs
111	Event Data Vault, Data Science Process, Data Science,	131118
	Transform Superstep : Transform Superstep, Building a Data	
	Warehouse, Transforming with Data Science, Hypothesis Testing,	
	Overfitting and Underfitting, Precision-Recall, Cross-Validation	
	Test.	
IV	Transform Superstep: Univariate Analysis, Bivariate Analysis,	15hrs
	Multivariate Analysis, Linear Regression, Logistic Regression,	
	Clustering Techniques, ANOVA, Principal Component Analysis	
	(PCA), Decision Trees, Support Vector Machines, Networks,	
	Clusters, and Grids, Data Mining, Pattern Recognition, Machine	
	Learning, Bagging Data, Random Forests, Computer Vision (CV)	
	, Natural Language Processing (NLP), Neural Networks,	
	TensorFlow.	
	Organize and Report Supersteps : Organize Superstep, Report	
	Superstep, Graphics, Pictures, Showing the Difference	

- Principles of Data Science Sinan Ozdemir PACKT 2016.
 Data Science from Scratch first Principle in python Joel Grus Shroff Publishers 201

Major II

Course Description: M.Sc. (Information Technology)		
Semester	Ι	
Course Name	Image Processing	
Course Code	PIT1IPT	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	To Understand the fundamental concepts of a digital image		
	processing system by analysing images in the frequency domain		
	using various transforms.		

Course Outcomes	After completing the course, Student will be able to:
	1) Explain basic fundamental concepts of digital image processing.
	2) Examine the images in the frequency domain using various transforms.
	3) Evaluate the techniques for image enhancement, restoration & Categorise of various compression techniques.
	4) Interpret Image compression, image segmentation, and representation techniques.

Module/	Course Description	Hrs.
Unit		
Ι	Introduction: Digital Image Processing, Origins of Digital Image Processing, Applications and Examples of Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Digital Image Fundamentals: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Basic Relationships Between Pixels, Basic Mathematical Tools Used in Digital Image Processing, Intensity Transformations and Spatial Filtering: Basics, Basic Intensity Transformation Functions, Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing (Lowpass) Spatial Filters, Sharpening (Highpass) Spatial Filters, Highpass, Bandreject,	15hrs

M.Sc. Part I, Information Technology Syllabus

M.Sc. Part I,	Information Technology Syllabus	
	and Bandpass Filters from Lowpass Filters, Combining Spatial	
	Enhancement Methods, Using Fuzzy Techniques for Intensity	
	Transformations and Spatial Filtering	
II	Filtering in the Frequency Domain: Background, Preliminary	15hrs
	Concepts, Sampling and the Fourier Transform of Sampled Functions,	
	The Discrete Fourier Transform of One Variable, Extensions to	
	Functions of Two Variables, Properties of the 2-D DFT and IDFT,	
	Basics of Filtering in the Frequency Domain, Image Smoothing Using	
	Lowpass Frequency Domain Filters, Image Sharpening Using	
	Highpass Filters, Selective Filtering, Fast Fourier Transform Image	
	Restoration and Reconstruction: A Model of the Image	
	Degradation/Restoration Process, Noise Models, Restoration in the	
	Presence of Noise OnlySpatial Filtering, Periodic Noise Reduction	
	Using Frequency Domain Filtering, Linear, Position-Invariant	
	Degradations, Estimating the Degradation Function, Inverse Filtering,	
	Minimum Mean Square Error (Wiener) Filtering, Constrained Least	
	Squares Filtering, Geometric Mean Filter, Image Reconstruction from	
	Projections Wavelet and Other Image Transforms: Preliminaries,	
	Matrix-based Transforms, Correlation, Basis Functions in the Time-	
	Frequency Plane, Basis Images, Fourier-Related Transforms, Walsh-	
	Hadamard Transforms, Slant Transform, Haar Transform, Wavelet	
	Transforms	
TTT	Color Image Processing: Color Fundamentals, Color Models,	151
III	color mage rocessing. Color rundamentars, color Wodels,	15hrs
1	Decuder color Image Processing Full Color Image Processing Color	
	Pseudocolor Image Processing, Full-Color Image Processing, Color Transformations, Color Image Smoothing and Sharmoning, Using	
	Transformations, Color Image Smoothing and Sharpening, Using	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals,	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries,	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries,	
	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction,	15hrs
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region Growing and by Region Splitting and Merging, Region Segmentation	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region Growing and by Region Splitting and Merging, Region Segmentation Using Clustering and Superpixels, Region Segmentation Using Graph Cuts, Segmentation Using Morphological Watersheds, Use of Motion	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region Growing and by Region Splitting and Merging, Region Segmentation Using Clustering and Superpixels, Region Segmentation Using Graph Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region Growing and by Region Splitting and Merging, Region Segmentation Using Clustering and Superpixels, Region Segmentation Using Graph Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and Level Sets: Background, Image Segmentation Using Snakes,	
IV	Transformations, Color Image Smoothing and Sharpening, Using Color in Image Segmentation, Noise in Color Images, Color Image Compression. Image Compression and Watermarking: Fundamentals, Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding, Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding, Predictive Coding, Wavelet Coding, Digital Image Watermarking, Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Morphological Algorithms, Morphological Reconstruction, Morphological Operations on Binary Images, Grayscale Morphology Image Segmentation I: Edge Detection, Thresholding, and Region Detection: Fundamentals, Thresholding, Segmentation by Region Growing and by Region Splitting and Merging, Region Segmentation Using Clustering and Superpixels, Region Segmentation Using Graph Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and	

Feature Descriptors, Principal Components as Feature Descriptors,	
Whole-Image Features, Scale-Invariant Feature Transform (SIFT)	

Reference Books:

- 1. Digital Image Processing, Gonzalez and Woods, Pearson/Prentice Hall
- 2. Fundamentals of Digital Image Processing, A K. Jain, PHI
- 3. The Image Processing Handbook, J. C. Russ, CRC

Major III

Course Description: M.Sc. (Information Technology)		
Semester	Ι	
Course Name	Soft Computing Techniques	
Course Code	PIT1SCT	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	Soft computing concepts like fuzzy logic, neural networks and		
	genetic algorithm, where Artificial Intelligence is the mother		
	branch of all. All these techniques will be more effective to solve		
	the problem efficiently.		

Course Outcomes	After completing the course, Student will be able to:
	1) Explain soft computing techniques and their roles in
	building intelligent machines.
	2) Determine the use of Artificial Intelligence, Fuzzy logic &
	Genetic algorithms.
	3) Make use of Fussy Logic Network for classification and
	regression problems.
	4) Evaluate soft computing approaches and solutions for a
	genetic algorithm & given problem

Module/ Unit	Course Description	Hrs.
Ι	 Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, applications of soft computing. Artificial Neural Network: Fundamental concept, Evolution of Neural Networks, Basic Models, McCulloh-Pitts Neuron, Linear Separability, Hebb Network. Supervised Learning Network: Perceptron Networks, Adaptive Linear Neuron, Multiple Adaptive Linear Neurons, Backpropagation 	15hrs

M.Sc. Part I, Information Technology Syllabus

M.St. 1 un 1,	Information Technology Syllabus	
	Network, Radial Basis Function, Time Delay Network, Functional Link	
	Networks, Tree Neural Network.	
	Associative Memory Networks: Training algorithm for pattern	
	Association, Autoassociative memory network, hetroassociative	
	memory network, bi-directional associative memory, Hopfield	
	networks, iterative autoassociative memory networks, temporal	
	associative memory networks.	
TT	UnSupervised Learning Networks: Fixed weight competitive nets,	1.51
II	Kohonen self-organizing feature maps, learning vectors quantization, counter propogation networks, adaptive resonance theory networks. Special Networks: Simulated annealing, Boltzman machine, Gaussian Machine, Cauchy Machine, Probabilistic neural net, cascade correlation	15hrs
	network, cognition network, neo-cognition network, cellular neural network, optical neural network Third Generation Neural Networks: Spiking Neural networks, convolutional neural networks, deep learning neural networks, extreme learning machine model. Reinforcement Learning Networks: Policy, Reward function, Value	
	function,	
	Model of the environment.	
TTT		15hra
III	 Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets: Classical sets, Fuzzy sets. Classical Relations and Fuzzy Relations: Cartesian Product of relation, classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Membership Function: features of the membership functions, fuzzification, methods of membership value assignments. Defuzzification: Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy relations, Defuzzification methods. Fuzzy Arithmetic and Fuzzy measures: fuzzy arithmetic, fuzzy measures, measures of fuzziness, fuzzy integrals. Fuzzy Rule base and Approximate reasoning: Fuzzy proportion, formation of rules, decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems, Fuzzy logic control systems, control system design, architecture and operation of FLC system, FLC system models and applications of FLC System. 	15hrs 15hrs
11	 Genetic Algorithm: Biological Background, Traditional optimization and search techniques, genetic algorithm and search space, genetic algorithm vs. traditional algorithms, basic terminologies, simple genetic algorithm, general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in genetic algorithm, problem solving using genetic algorithm, the schema theorem, classification of genetic algorithm, Holland classifier systems, genetic programming, advantages and limitations and applications of genetic algorithm. Differential Evolution Algorithm, Hybrid soft computing techniques – neuro – fuzzy hybrid, genetic neuro-hybrid systems, genetic fuzzy hybrid and fuzzy genetic hybrid systems. 	1 JHTS

- 1. Artificial Intelligence and Soft Computing, Anandita Battacharya Das, SPD 3rd 2018
- 2. Principles of soft computing, S.N.Sivanandam & amp; S.N.Deepa, Wiley 3 rd 2019
- 3. Neuro-Fuzzy Computing and Soft, J.S.R.Jang, C.T.Sun and E.Mizutani, Prentice Hall of India 2004
- 4. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & amp; Applications S.Rajasekaran, G. A. Vijayalakshami Prentice Hall of India 2004
- 5. Fuzzy Logic with Engineering Applications, Timothy J.Ross McGrawHill 1997 15
- 6. Genetic Algorithms: Search, Optimization and Machine Learning Davis E.Goldberg Addison Wesley 1989
- 7. Introduction to AI and Expert System, Dan W. Patterson Prentice, Hall of India 2009

Major	IV
-------	----

Course Description: M.Sc.(Information Technology)			
Semester	Ι		
Course Name	Practical of Data Science + Practical of Image Processing		
Course Code	PIT1PR1		
Credit	1		
Hours	2 Hrs per week		

Course Objectives	 Gain practical, hands-on experience with statistics programming languages and big data tools through coursework and applied research experiences. To understand how to analyse images in the frequency domain using various transforms for image enhancement and image restoration, image compression, segmentation and representation techniques in a mathematical way using Matlab/Scilab/Python.
-------------------	--

Course Outcomes	After completing the course, Student will be able to:	
	1) Construct program using utilities, auditing and data	
	visualization in data science.	
	2) Build a program to retrieve, assess, process, transform and	
	organise the data in data science.	
	3) Design a program for image transformation.	
	4) Design a program for Color Image Processing.	

Module/ Unit	Course Description	Hrs
1	A) Text Delimited CSV to HORUS FormatB) XML to HORUS format	2hrs
2	A) JSON to HORUS Format	2hrs

M.Sc. Part I, Information Technology Syllabus

M.Sc. Pari 1, Information Technology Syllabus			
	B) AUDIO to HORUS Format		
3	Fixing Utilities	2hrs	
	A) Data Binning or Bucketing		
4	B) Averaging of data	2hrs	
5	Assessing Data	2hrs	
6	Build the time hub, links and satellites	2hrs	
7	Transforming Data	2hrs	
8	Data Visualization with Power BI	2hrs	
9	Gray Level Slicing and Bit Plane Slicing	2hrs	
10	Histogram and histogram equalization.	2hrs	
11	Smoothing and sharpening of an image.	2hrs	
12	Median Filtering of an Image.	2hrs	
13	Homomorphic Filtering of an image.	2hrs	
14	Edge Detection of an image	2hrs	
15	Program to perform threshold on an image.	2hrs	

1. Principles of Data Science Sinan Ozdemir PACKT 2016.

2. Data Science from Scratch first Principle in python Joel Grus Shroff Publishers 201

3. Digital Image Processing, Gonzalez and Woods, Pearson/Prentice Hall

4. Fundamentals of Digital Image Processing, A K. Jain, PHI

5 The Image Processing Handbook, J. C. Russ, CRC

Elective I

Course Description: M.Sc. (Information Technology)			
Semester	Ι		
Course Name	Cloud Computing		
Course Code	PIT1CCT		
Credit	2		
Hours	4 Hrs per week		

Course Objectives	To learn how to use Cloud Services, implement Virtualization,	
	implement Task Scheduling algorithms.	
	To Apply Map-Reduce concept to applications, build Private	
	Cloud & Broadly educate to know the impact of engineering on	
	legal and societal issues involved.	

Course Outcomes	After completing the course, Student will be able to:		
	1) Define cloud computing and various virtualization technique.		
	2) Classify the types of cloud and cloud computing architecture.		
	3) Explain cloud security mechanism.		
	4) Elaborate advanced architecture and cloud delivery model.		

Module/	Course Description	Hrs.
Unit		
Ι	Introduction to Cloud Computing: Introduction, Historical developments, Building Cloud Computing Environments, Principles of Parallel and Distributed Computing: Eras of Computing, Parallel v/s distributed computing, Elements of Parallel Computing, Elements of distributed computing, Technologies for distributed computing. Virtualization:Introduction, Characteristics of virtualized environments, Taxonomy of virtualization techniques, Virtualization and	15hrs
	cloud computing, Pros and cons of virtualization, Technology examples. Logical Network Perimeter, Virtual Server, Cloud Storage Device, Cloud usage monitor, Resource replication, Ready-made environment.	
II	Cloud Computing Architecture: Introduction, Fundamental concepts and models, Roles and boundaries, Cloud Characteristics, Cloud	15hrs

M.Sc. Part I, Information Technology Syllabus

M.Sc. Part I	, Information Technology Syllabus	
	Delivery models, Cloud Deployment models, Economics of the cloud,	
	Open challenges.	
	Fundamental Cloud Architectures: Workload Distribution	
	Architecture, Resource Pooling Architecture, Dynamic Scalability	
	Architecture, Elastic Resource Capacity Architecture, Service Load	
	Balancing Architecture, Cloud Bursting Architecture, Elastic Disk	
	Provisioning Architecture, Redundant Storage Architecture.	
	Industrial Platforms and New Developments:	
	Amazon Web Services, Google App Engine, Microsoft Azure.	
III	Fundamental Cloud Security: Basics, Threat agents,	15hrs
	Cloud security threats, additional considerations.	
	Cloud Management Mechanisms: Remote administration system,	
	Resource Management System, SLA Management System, Billing	
	Management System	
	Cloud Security Mechanisms: Encryption, Hashing, Digital	
	Signature, Public Key Infrastructure (PKI), Identity and Access	
	Management (IAM), Single Sign-On (SSO), Cloud-Based Security	
	Groups, Hardened Virtual Server Images.	
IV	Advanced Cloud Architectures: Hypervisor Clustering Architecture,	15hrs
	Load Balanced Virtual Server Instances Architecture, Non-Disruptive	
	Service Relocation Architecture, Zero Downtime Architecture, Cloud	
	Balancing Architecture, Resource Reservation Architecture, Dynamic	
	Failure Detection and Recovery Architecture, Bare-Metal Provisioning	
	Architecture, Rapid Provisioning Architecture, Storage Workload	
	Management Architecture.	
	Cloud Delivery Model Considerations: Cloud Delivery Models: The	
	Cloud Provider Perspective, Cloud Delivery Models: The Cloud	
	Consumer Perspective	

- 1. Distributed and Cloud Computing, From Parallel Processing to the Internet of ThingsKai Hwang, Jack Dongarra, Geoffrey Fox MK Publishers -- 2012VMware and Microsoft Platform in the Virtual Data center, 2006, Auerbach.
- 2. Cloud Computing: A Practical Approach , Anthony T. Velte, Toby J. Velte, Ph.D. Robert Elsenpeter.

Elective II

Course Description: B.Sc. (Information Technology)		
Semester	Ι	
Course Name	Ethical Hacking	
Course Code	PIT1EHT	
Credit	2	
Hours	4 Hrs per week	

Course Objectives	To understand the ethics, legality, methodologies and techniques	
_	of hacking.	

Course OutcomesAfter completing the course, Student will be able	
	1) Define information security and types of malware.
	2) Classify the types of attacks and their common prevention
	mechanisms.
	3) Explain enterprise strategy and ethical hacking patterns.
	4) Examine application hacking and malware analysis.

Module/ Unit	Course Description	Hrs.
I	Information Security : Attacks and Vulnerabilities Introduction to information security : Asset, Access Control, CIA, Authentication, Authorization, Risk, Threat, Vulnerability, Attack, Attack Surface, Malware, Security-Functionality-Ease of Use Triangle Types of malware :Worms, viruses, Trojans, Spyware, Rootkits Types of vulnerabilities : OWASP Top 10 : cross-site scripting (XSS), cross site request forgery (CSRF/XSRF), SQL injection, input parameter manipulation, broken authentication, sensitive information disclosure, XML External Entities, Broken access control, Security Misconfiguration, Using components with known vulnerabilities, Insufficient Logging and monitoring, OWASP Mobile Top 10, CVE Database	15hrs

M.Sc. Part I, Information Technology Syllabus

II	Information Technology Syllabus Types of attacks and their common prevention mechanisms :	15hrs
	Keystroke Logging, Denial of Service (DoS /DDoS), Waterhole attack,	151115
	brute force, phishing and fake WAP, Eavesdropping, Man-in-the-	
	middle, Session Hijacking, Clickjacking, Cookie Theft, URL	
	Obfuscation, buffer overflow, DNS poisoning, ARP poisoning,	
	Identity Theft, IoT Attacks, BOTs and BOTNETs Case-studies :	
	Recent attacks – Yahoo, Adult Friend Finder, eBay, Equifax,	
	WannaCry, Target Stores, Uber, JP Morgan Chase, Bad Rabbit	
	Ethical Hacking – I (Introduction and pre-attack) Introduction: Black	
	Hat vs. Gray Hat vs. White Hat (Ethical) hacking, Why is Ethical	
	hacking needed?, How is Ethical hacking different from security	
	auditing and digital forensics?, Signing NDA, Compliance and	
	Regulatory 15L concerns, Black box vs. White box vs. Black box,	
	Vulnerability assessment and Penetration Testing. Approach :	
	Planning - Threat Modeling, set up security verification standards, Set	
	up security testing plan – When, which systems/apps, understanding	
	functionality, black/gray/white, authenticated vs. unauthenticated,	
	internal vs. external PT, Information gathering, Perform Manual and	
	automated (Tools: WebInspect/Qualys, Nessus, Proxies, Metasploit)	
	VA and PT, How WebInspect/Qualys tools work: Crawling/Spidering,	
	requests forging, pattern matching to known vulnerability database and	
	Analyzing results, Preparing report, Fixing security gaps following the	
	report	
		1 51
III	Enterprise strategy : Repeated PT, approval by security testing team,	15hrs
	Continuous Application Security Testing, Phases:	
	Reconnaissance/foot-printing/Enumeration, Phases: Scanning,	
	Sniffing	
	Ethical Hacking :Enterprise Security Phases : Gaining and	
	Maintaining Access : Systems hacking – Windows and Linux –	
	Metasploit and Kali Linux, Keylogging, Buffer Overflows, Privilege	
	Escalation, Network hacking - ARP Poisoning, Password Cracking,	
	WEP Vulnerabilities, MAC Spoofing, MAC Flooding, IPSpoofing,	
	SYN Flooding, Smurf attack,	
IV	Applications hacking : SMTP/Email-based attacks, VOIP	15hrs
L V	vulnerabilities, Directory traversal, Input Manipulation, Brute force	131115
	LATTACK Unsecured login mechanisms NUL intection XNN Mobile	
	attack, Unsecured login mechanisms, SQL injection, XSS, Mobile	
	attack, Unsecured login mechanisms, SQL injection, XSS, Mobile apps security	
	apps security	

and evasion techniques, Secure Code Reviews (Fortify tool, OWASP	
Secure Coding Guidelines)	

- 1. Ethical Hacking Review Guide, Kimberly Graves, Wiley Publishing
- 2. Ethical Hacking, AnkitFadia, 2nd Edition, Macmillan India Ltd,2006.
- 3. Insider Computer Fraud, Kenneth C. Brancik, 2008, Auerbach Publications.
- 4. Certified Ethical Hacker Study Guide v9, Sean-Philip Oriyano, Sybex; Study Guide Edition,2016

Course Description: M.Sc.(Information Technology)		
Semester	Ι	
Course Name	Practical : Practical of Cloud Computing + Practical of Soft Computing Techniques	
Course Code	PIT1PR2	
Credit	1	
Hours	2 Hrs per week	

 Course Objectives To provide easy, scalable access to computing resources and IT services. To understand soft computing concepts by doing programs of fuzzy logic, neural networks and genetic algorithms. To understand how to solve the problems Mathematically by using Python Programming language efficiently.

Course Outcomes	After completing the course, Student will be able to:	
	1) Create web services using java application (Netbeans).	
	2) Make use of virtualization using VMWare ESXi server and managing with vCenter.	
	3) Design a simple linear neural network model and Back Propagation	
	4) Make use of a program for in fuzzy logic and Genetic Algorithms.	

Module/ Unit	Course Description	Hrs
1	Write a program for implementing Client Server communication model using TCP. A client server based program using TCP to find if the number entered is prime.	2Hrs

M.Sc. Part I, Information Technology Syllabus

Information Technology Syllabus	
Write a program for implementing Client Server communication model	2Hrs
using TCP.	
A client server TCP based chatting application.	
Write a program for implementing Client Server communication model	
using UDP.A client server based program using UDP to find if the	
number entered is even or odd.	
Write a program for implementing Client Server communication model	2Hrs
using UDP.	
A client server based program using UDP to find the factorial of the	
entered number.	
Write a program for implementing Client Server communication model	2Hrs
using UDP.	
subtraction, multiplication and division.	
	2Hrs
A RMI based application program that converts digits to words, e.g. 123	
will be converted to one two three.	
	2Hrs
with vCenter.	
Design a simple linear neural network model.	2hrs
Calculate the output of neural net using both binary and bipolar sigmoidal function	2hrs
Generate AND/NOT function using McCulloch Pitts neural net2hrs	
Write a program to implement Hebb's rule2hr	
Write a program to implement Delta rule2hr	
Write a program for Back Propagation Algorithm	2hrs
Solve the ratios using fuzzy logic	2hrs
Implementation of Simple genetic algorithm.	2hrs
	 Write a program for implementing Client Server communication model using TCP. A client server TCP based chatting application. Write a program for implementing Client Server communication model using UDP. A client server based program using UDP to find if the number entered is even or odd. Write a program for implementing Client Server communication model using UDP. A client server based program using UDP to find the factorial of the entered number. Write a program for implementing Client Server communication model using UDP. A client server based program using UDP to find the factorial of the entered number. Write a program for implementing Client Server communication model using UDP. A program to implement simple calculator operations like addition, subtraction, multiplication and division. Write a program to show the object communication using RMI. A RMI based application program that converts digits to words, e.g. 123 will be converted to one two three. Implement virtualization using VMWare ESXi Server and managing with vCenter. Design a simple linear neural network model. Calculate the output of neural net using both binary and bipolar sigmoidal function Generate AND/NOT function using McCulloch Pitts neural net Write a program to implement Delta rule Write a program to implement Delta rule Write a program for Back Propagation Algorithm Solve the ratios using fuzzy logic

- 1. Distributed and Cloud Computing, From Parallel Processing to the Internet of ThingsKai Hwang, Jack Dongarra, Geoffrey Fox MK Publishers -- 2012VMware and Microsoft Platform in the Virtual Data center, 2006, Auerbach.
- 2. Cloud Computing: A Practical Approach , Anthony T. Velte, Toby J. Velte, Ph.D. Robert Elsenpeter.
- 3. Artificial Intelligence and Soft Computing, Anandita Battacharya Das, SPD 3rd 2018
- 4. Principles of soft computing, S.N.Sivanandam & amp; S.N.Deepa, Wiley 3 rd 2019

M.Sc. Part I, Information Technology Syllabus

5. Neuro-Fuzzy Computing and Soft, J.S.R.Jang, C.T.Sun and E.Mizutani, Prentice Hall of

India 2004

- 6. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & amp; Applications S.Rajasekaran, G. A. Vijayalakshami Prentice Hall of India 2004
- 7. Fuzzy Logic with Engineering Applications, Timothy J.Ross McGrawHill 1997 15
- 8. Genetic Algorithms: Search, Optimization and Machine Learning Davis E.Goldberg Addison Wesley 1989
- 9. Introduction to AI and Expert System, Dan W. Patterson Prentice, Hall of India 2009

Minor

Course Description: M.Sc. (Information Technology)		
Semester	Ι	
Course Name	Research Methodology	
Course Code	PIT1RMT	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	Understand	some	basic	concepts	of	research	and	its
_	methodologi	es. Sele	ct and o	define appr	opria	ite research	n prob	lem
	and paramet	ters. Or	rganize	and condu	uct 1	research in	n a m	nore
	appropriate r	nanner.	Write a	research re	eport	and thesis		

Course Outcomes	After completing the course, Student will be able to:	
	1) Define the role business research	
	2) Classify stages of the research and Measurement	
	Sampling and Field work	
	3) Distinguish different research methods and	
	measurement concepts.	
	4) Explain Different concepts of data analysis	

Module/ Unit	Course Description	Hrs.
I	Introduction: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues Beginning Stages of Research Process: Problem definition, Qualitative research tools, Secondary data research	15hrs
II	Research Methods and Data Collection: Survey research, communicating with respondents, Observation methods, Experimental Research.	15hrs

M.Sc. Part I, Information Technology Syllabus

III	Measurement Concepts, Sampling and Field work: Levels of	15hrs
	Scale measurement, attitude measurement, questionnaire design,	
	sampling designs and procedures, determination of sample size	
IV	Data Analysis and Presentation: Editing and Coding, Basic Data	15hrs
	Analysis, Univariate Statistical Analysis and Bivariate Statistical	
	analysis and differences between two variables. Multivariate	
	Statistical Analysis	

- 1) Business Research Method ,William G.Zikmund, B.J Babin, J.C. Carr, Cengage, 8e, 2016.
- 2) Research Methods for Business Students Fifth Edition, Mark Saunders2011
- 3) Multivariate Data Analysis, Hair7e

Semester- II

Major I

Course Description: M.Sc. (Information Technology)		
Semester	II	
Course Name	Big Data Analytics	
Course Code	PIT2BDA	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	To enable students to have skills that will help them to solve
	complex real world problems for decision support. To provide an
	overview of an exciting growing field of big data analytics.

Course Outcomes	After completing the course, Student will be able to:		
	1) Explain concept of Data and Big Data		
	2) Explain clustering and association algorithm		
	3) Solve problem based on classification methods		
	4) Elaborate Data Products and Patterns with Hadoop in Data		
	science		

Module/	Course Description	Hrs
Unit		
I	 Introduction to Big Data Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Key roles for New Big Data Ecosystems, Examples of big Data Analytics. Big Data Analytics: Introduction to big data analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Analytics Life Cycle 	15hrs

M.Sc. Part I, Information Technology Syllabus

111501 I wit I,	Information Lechnology Syllabus	
II	Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules, Apriori Algorithm, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models	15hrs
III	Classification, Decision Trees, Naïve Bayes, Diagnostics of Classifiers, Additional Classification Methods, Time Series Analysis, Box Jenkins methodology, ARIMA Model, Additional methods. Text Analysis, Steps, Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency-Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments. Data Product, Building Data Products at Scale with Hadoop Data Science Pipeline and Hadoop Ecosystem, Operating System for Big Data, Concepts, Hadoop Architecture, Working with Distributed file system, Working with Distributed Computation, Framework for Python and Hadoop Streaming, Hadoop Streaming, MapReduce with Python, Advanced MapReduce. In- Memory Computing with Spark,Spark Basics, Interactive Spark with PySpark, Writing Spark Applications,	15hrs
IV	Distributed Analysis and Patterns : Computing with Keys, Design Patterns, Last-Mile Analytics, Data Mining and Warehousing, Structured Data Queries with Hive, HBase, Data Ingestion, Importing Relational data with Sqoop, Injesting stream data with flume. Analytics with higher level APIs, Pig, Spark's higher level APIs	15hrs

- 1. Big Data and Analytics: Subhashini Chellappan Seema Acharya, Wiley, First
- 2. Data Analytics with Hadoop An Introduction for Data Scientists: Benjamin Bengfort and Jenny Kim, O'Reilly, 2016
- 3. Big Data and Hadoop: V.K Jain, Khanna Publishing, First, 2018

Major II

Course Description: M.Sc. (Information Technology)		
Semester	II	
Course Name	Modern Networking	
Course Code	PIT2MNT	
Credit	4	
Hours	4 Hrs per week	

Course Objectives	• To understand the state-of-the-art in network protocols	
	architectures and applications.	
	• Analyze existing network protocols and networks.	
	• Develop new protocols in networking	

Course Outcomes	After completing the course, Student will be able to:		
	1) List the elements of Modern Networking		
	2) Classify different levels of Software Define Network		
	3) Explain Network Virtualization Function and VLAN		
	4) Summarizing Quality of Service, Quality of Experience &		
	Modern Network Architecture.		

Module/ Unit	Course Description	Hrs.
Ι	Modern Networking Elements of Modern Networking The Networking Ecosystem ,Example Network Architectures,Global Network Architecture,A Typical Network Hierarchy Ethernet Applications of Ethernet Standards Ethernet Data Rates Wi-Fi Applications of Wi-Fi,Standards Wi-Fi Data Rates 4G/5G Cellular First Generation Second Generation, Third Generation Fourth Generation Fifth Generation, Cloud Computing Cloud Computing Concepts The Benefits of Cloud Computing Cloud Networking Cloud Storage, Internet of Things Things on the Internet of Things, Evolution Layers of the Internet of Things, Network Convergence Unified Communications, Requirements and Technology Types of	15Hrs

M.Sc. Part I, Information Technology Syllabus

	Information Technology Syllabus	I
	Network and Internet Traffic, Elastic Traffic, Inelastic Traffic, Real- Time Traffic Characteristics Demand: Big Data, Cloud Computing, and Mobile TrafficBig Data Cloud Computing, Mobile Traffic, Requirements: QoS and QoE,,Quality of Service, Quality of Experience, Routing Characteristics, Packet Forwarding, Congestion Control ,Effects of Congestion, Congestion Control Techniques, SDN and NFV Software Defined Networking, Network Functions Virtualization Modern Networking Elements	
Ι	Software-Defined Networks SDN: Background and Motivation, Evolving Network Requirements Demand Is Increasing, Supply Is Increasing Traffic Patterns Are More Complex Traditional Network Architectures are Inadequate, The SDN Approach Requirements SDN Architecture Characteristics of Software12 20 Defined Networking, SDN- and NFV-Related Standards Standards Developing Organizations Industry Consortia Open Development Initiatives, SDN Data Plane and OpenFlow SDN Data Plane, Data Plane Functions Data Plane Protocols OpenFlow Logical Network Device Flow Table Structure Flow Table Pipeline, The Use of Multiple Tables Group Table OpenFlow Protocol, SDN Control Plane SDN Control Plane Architecture Control Plane Functions, Southbound Interface Northbound InterfaceRouting, ITU-T Model, OpenDaylight OpenDaylight Architecture OpenDaylight Helium, REST REST Constraints Example REST API, Cooperation and Coordination Among Controllers, Centralized Versus Distributed Controllers, HighAvailability Clusters Federated SDN Networks, Border Gateway Protocol Routing and QoS Between Domains, Using BGP for QoS Management IETF SDNi OpenDaylight SNDi SDN Application Plane SDN Application Plane Architecture Northbound Interface, Network Services Abstraction Layer Abstractions, User Interface, Network Services Abstraction Layer Abstractions in SDN, Frenetic Traffic Engineering PolicyCop Measurement and Monitoring Security OpenDaylight DDoS Application Data Center Networking, Big Data over SDN Cloud Networking over SDN Mobility and Wireless Information-Centric Networking CCNx, Use of an Abstraction Layer	15Hrs
III	Virtualization, Network Functions Virtualization: Concepts and Architecture, Background and Motivation for NFV, Virtual Machines The Virtual Machine Monitor, Architectural Approaches Container Virtualization, NFV Concepts Simple Example of the Use of NFV, NFV Principles High-Level NFV Framework, NFV Benefits and Requirements NFV Benefits, NFV Requirements, NFV Reference Architecture NFV Management and Orchestration,	15Hrs

M.Sc. Part I, Information Technology Syllabus

	Reference Points Implementation, NFV Functionality, NFV	
	Infrastructure, Container Interface, Deployment of NFVI	
	Containers, Logical Structure of NFVI Domains, ComputeDomain,	
	Hypervisor Domain, Infrastructure Network Domain, Virtualized	
	Network Functions, VNF Interfaces, VNFC to VNFC	
	Communication, VNF Scaling, NFV Management and Orchestration,	
	Virtualized Infrastructure Manager, Virtual Network Function	
	Manager, NFV Orchestrator, Repositories, Element Management,	
	OSS/BSS, NFV Use Cases Architectural Use Cases, Service-	
	Oriented Use Cases, SDN and NFV Network ware Defined Storage,	
	SDI Architecture	
	Winterstien Winterst LAND, The Har of Winterst LAND, Defining	1 71
IV	Virtualization, Virtual LANs ,The Use of Virtual LANs, Defining	15hrs
	VLANs, Communicating VLAN Membership ,IEEE 802.1Q VLAN	
	Standard, Nested VLANs, OpenFlow VLAN Support, Virtual Private	
	Networks, IPsec VPNs, MPLS VPNs, Network Virtualization,	
	Simplified Example, Network Virtualization Architecture, Benefits	
	of Network Virtualization, OpenDaylight's Virtual Tenant Network,	
	Software Defined Infrastructure, Soft	

References:

1. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud William Stallings AddisonWesley

2. Network Functions Virtualization (NFV) with a Touch of SDN Rajendra Chayapathi Syed Farrukh Hassan AddisonWesley

Course Description: M.Sc. (Information Technology)		
Semester	II	
Course Name	Natural Language Processing	
Course Code	PIT2NLP	
Credit	4	
Hours	4 Hrs per week	

Major III

Course Objectives	To define natural language processing and to learn various stages of	
	natural language processing.	

Course Outcomes	After completing the course, Student will be able to:
	1) Explain the field of natural language processing
	2) design various POS tagging techniques and parsers
	3) Design and test algorithms for semantic and pragmatic analysis.
	 Apply NLP techniques to design real world NLP applications.

Module/	Course Description	Hrs.
Unit		
Ι	Introduction to NLP Origin & History of NLP; Language, Knowledge and Grammar in language processing; Stages in NLP;Ambiguities and its types in English and Indian Regional Llanguages; Challenges of NLP;Applications of NLP Self-Learning topics: Variety types of tools for regional languages pre-processing and other functionalities Word Level Analysis Basic Terms: Tokenization, Stemming, Lemmatization; Survey of English Morphology, Inflectional Morphology, Derivational Morphology; Regular expression with types; Morphological Models: Dictionary lookup, finite state morphology; Morphological parsing with FST (Finite State Transducer);Lexicon free FST Porter Stemmer algorithm; Grams and its variation: Bigram, Trigram; Simple (Unsmoothed) N-grams;N-gram Sensitivity to the Training Corpus; Unknown Words: Open versus closed vocabulary tasks; Evaluating N- grams: Perplexity;Smoothing: Laplace Smoothing, Good-Turing Discounting;	15hrs

M.Sc. Part I, Information Technology Syllabus

11.000 1 0.00 1,	information Technology Syllabus	
	Self-Learning topics: Noisy channel models, various edit distance,	
	Advance Issues in Language Modelling	
II	Syntax analysis Part-Of-Speech tagging(POS); Tag set for English (Upenn Treebank); Difficulties /Challenges in POS tagging; Rule- based, Stochastic and Transformation-based tagging; Generative Model: Hidden Markov Model (HMM Viterbi) for POS tagging; Issues in HMM POS tagging; Discriminative Model: Maximum Entropy model, Conditional random Field (CRF);Parsers: Top down and Bottom up; Modelling constituency; Bottom Up Parser: CYK, PCFG (Probabilistic Context Free Grammar), Shift Reduce Parser; Top Down Parser: Early Parser, Predictive Parser Self-Learning topics: Evaluating parsers, Parsers based language modelling, Regional languages POS tree banks	15hrs
III	Semantic Analysis Introduction, meaning representation; Lexical Semantics; Corpus study; Study of Various language dictionaries like WorldNet, Babelnet; Relations among lexemes & their senses – Homonymy, Polysemy, Synonymy, Hyponymy; Semantic Ambiguity; Word Sense Disambiguation (WSD); Knowledge based approach(Lesk's Algorithm), Supervised (Naïve Bayes, Decision List),Introduction to Semi-supervised method (Yarowsky) Unsupervised (Hyperlex) Self-Learning topics: Dictionaries for regional languages, Distributional Semantics, Topic Models	15hrs
IV	Pragmatic & Discourse Processing Discourse: Reference Resolution, Reference Phenomena, Syntactic & Semantic constraint on coherence; Anaphora Resolution using Hobbs and Cantering Algorithm Self-Learning topics: Discourse segmentation, Conference resolution Applications of NLP Case studies on (preferable in regional language):Machine translation; Text Summarization; Sentiment analysis; Information retrieval; Question Answering system Self-Learning topics: Applications based on Deep Neural Network with NLP such as LSTM network, Recurrent Neural network etc.	15hrs

- 1. Sentiment Analysis and Opinion Mining, Bing Liu, Morgan & Claypool Publishers, May 2012.
- 2. Speech and Language Processing (3rd ed. draft) Dan Jurafsky and James H. Martin
- 3. Natural Language Understanding 2nd Edition, James Allen (Author), Pearson

Major IV

Course Description: M.Sc.(Information Technology)			
Semester	II		
Course Name	Practical of Big Data Analytics + Practical of Modern Networking		
Course Code	PIT2PR1		
Credit	1		
Hours	2 Hrs per week		

|--|

Course Outcomes	After completing the course, Student will be able to:
	1) Build hadoop and HDFS & develop application in MongoDB
	2) Construct a program using MapReduce & design an application in Hive
	3) Build IP SLA Tracking & Path Control & create AS-PATH attribute,
	4) Construct IBGP & EBGP Session & develop Inter VLAN Routing

Module/ Unit	Course Description	Hrs
1	Install and configure Hadoop.	2Hrs
2	Run Hadoop and HDFS ad explore HDFS.	2Hrs

M.Sc. Part I, Information Technology Syllabus

3	Implement Decision tree classification techniques.	2Hrs
4	Implement SVM classification techniques	2Hrs
5	CLASSIFICATION MODEL	2Hrs
	a. Install relevant package for classification.	
	b. Choose classifier for classification problem	
6	CLASSIFICATION MODEL:	2Hrs
	Evaluate the performance of classifier.	
7	CLUSTERING MODEL	2Hrs
	a. Clustering algorithms for unsupervised classification.	
	b. Plot the cluster data using R visualizations.	
8	Configure RIP Routing Protocol.	2Hrs
9	Configure IP SLA Tracking and Path Control Topology	2Hrs
10	Configure Path Control Topology	2Hrs
11	Configure EIGRP Routing Protocol	2Hrs
12	Using the AS_PATH Attribute	2Hrs
13	Configure BGP Commands	2Hrs
14	Configuring IBGP and EBGP Sessions,	2Hrs
15	Inter-VLAN Routing	2Hrs

References:

- 1. Big Data and Analytics: Subhashini Chellappan Seema Acharya, Wiley, First
- 2. Data Analytics with Hadoop An Introduction for Data Scientists: Benjamin Bengfort and Jenny Kim, O'Reilly, 2016
- 3. Big Data and Hadoop: V.K Jain, Khanna Publishing, First, 2018
- 4. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud William Stallings AddisonWesley
- 5. Network Functions Virtualization (NFV) with a Touch of SDN Rajendra Chayapathi Syed Farrukh Hassan AddisonWesley

Course Description: M.Sc. (Information Technology)		
Semester	II	
Course Name	Microservices Architecture	
Course Code	PIT2MAT	
Credit	4	
Hours	4 Hrs per week	

Elective I

Course Objectives	Gain a thorough understanding of the philosophy and
Course Objectives	
	architecture of Web applications using ASP.NET Core MVC;
	Acquire a working knowledge of Web application development
	using ASP.NET Core MVC 6 and Visual Studio Persist data with
	XML Serialization and ADO.NET with SQL Server Create
	HTTP services using ASP.NET Core Web API

Course Outcomes	After completing the course, Student will be able to:
	1) Define Micro services Architecture & Micro services Boundaries. Elaborate Service Design and Micro Services
	in Practice
	2) Explain ASP.Net Core, Docker and Continuous
	Integration
	3) Explain Data Services & Micro Services Ecosystems
	4) Create Data Services

Module/ Unit	Course Description	Hrs.
Ι	Microservices: Understanding Microservices, Adopting Microservices, The Microservices Way. Microservices Value Proposition: Deriving Business Value, defining a Goal Oriented, Layered Approach, Applying the Goal-Oriented, Layered Approach. Designing Microservice Systems: The Systems Approach to Microservices, A Microservices Design Process, Establishing a Foundation: Goals and Principles, Platforms, Culture. Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and	15Hrs

M.Sc. Part I, Information Technology Syllabus

111501 I wit I,	Information Technology Syllabus	
	Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies	
II	System Design and Operations : Independent Deployability, More Servers, Docker and Microservices, Role of Service Discovery, Need for an API Gateway, Monitoring and Alerting. Adopting Microservices in Practice: Solution Architecture Guidance, Organizational Guidance, Culture Guidance, Tools and Process Guidance, Services Guidance. Building Microservices with ASP.NET Core : Introduction, Installing .NET Core, Building a Console App, Building ASP.NET Core App. Delivering Continuously: Introduction to Docker, Continuous integration with Wercker, Continuous Integration with Circle CI, Deploying to Dicker Hub.	15Hrs
III	Building Microservice with ASP.NET Core: Microservice, Team Service, API First Development, Test First Controller, Creating a CI pipeline, Integration Testing, Running the team service Docker Image. Backing Services: Microservices Ecosystems, Building the location Service, Enhancing Team Service Building an ASP.NET Core Web Application : ASP.NET Core Basics, Building Cloud-Native Web Applications.	15Hrs
IV	Creating Data Service: Choosing a Data Store, Building a Postgres Repository, Databases are Backing Services, Integration Testing Real Repositories, Exercise	15hrs

References:

- 1. Building Microservices with ASP.NET Core ,Kevin Hoffman ,O'Reilly
- Building Microservices: Designing Fine-Grained Systems, Sam Newman ,O'Reilly
 Production-ready Microservices, Susan J. Fowler, O'Reilly

Elective II

Course Description: B.Sc. (Information Technology)		
Semester	II	
Course Name	Data Security	
Course Code	PIT2DST	
Credit	2	
Hours	4 Hrs per week	

Course Objectives	To understand the secure storage, control access and prevent
	unauthorized processing, transfer, or deletion of data.

Course Outcomes	After completing the course, Student will be able to:
	5) Define Data security and cryptographic techniques.
	6) Classify the types of attacks and their common prevention
	mechanisms.
	7) Explain program security and time to time checkups.
	8) Examine security in networks & firewalls.

Module/	Course Description	Hrs.
Unit		
Ι	Introduction to Data Security : Attacks, Vulnerability,Security Goals, Security Services and mechanisms Conventional Cryptographic Techniques : Conventional substitution and ransposition ciphers, One-time Pad, Block cipher and Stream Cipher, Steganography	15hrs
II	Symmetric and Asymmetric Cryptographic Techniques : DES, AES, RSA algorithms Authentication and Digital Signatures : Use of Cryptography for authentication	15hrs
III	Program Security : Nonmalicious Program errors – Buffer overflow, Incomplete mediation, Time-of-check to Time-of-use Errors, Viruses, Trapdoors, Salami attack, Man-in-the-middle attacks, Covert channels	15hrs
IV	Security in Networks : Threats in networks, Network Security Controls – Architecture, Encryption, Content Integrity, Strong	15hrs

Authentication, Access Controls, Wireless Security, Honeypots,
Traffic flow security, Firewalls – Design and Types of Firewalls

References:

- 1. Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education
- 2. Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson
- 3. Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- 4. Network Security, Essentials: Applications and Standards, by William Stallings.

Course Description: M.Sc.(Information Technology)		
Semester	II	
Course Name	Practical of Microservices Architectures + Practical of Natural Language Processing	
Course Code	PIT2PR2	
Credit	1	
Hours	2 Hrs per week	

Course Objectives	 To understand Natural Language Processing concepts by doing programs on basic concepts and algorithmic description of Morphology, Syntax, Semantics, and Pragmatics & Discourse analysis. Gain a practical understanding of.NET Core; Deploy
	ASP.NET Core MVC applications to the Windows Azure cloud.

Course Outcomes	After completing the course, Student will be able to:		
	 Define Micro services Architecture & Micro services Boundaries, Elaborate Service Design and Micro Services in Practice 		
	2) Explain ASP.Net Core, Docker and Continuous Integration		
	 Apply various text pre-processing techniques and N- Gram Model for any given text. 		
	 Develop morphological analysis, grammar checker word generation and different POS taggers. 		

Module/ Unit	Course Description	Hrs
1	Installing Visual studio .Net	2hrs
2	Building APT.NET Core MVC Application	2hrs

M.Sc. Part I, Information Technology Syllabus

<i>w</i> 1.50. 1 <i>u</i> 11 1,	Information Technology Syllabus	
3	Building ASP.NET Core REST API.	2hrs
4	Installing Docker	2hrs
5	Working with Docker, Docker Commands.	2hrs
6	Working with Docker Images and Containers.	2hrs
7	Creating Microservice with ASP.NET Core	2hrs
8	Installing Docker Toolbox	2hrs
9	Write a program to implement sentence segmentation and word Tokenization	2hrs
10	Write a program to Implement stemming and lemmatization.	2hrs
11	Write a program to Implement a tri-gram model	2hrs
12	Write a program to Implement PoS tagging using HMM & Neural Model.	2hrs
13	Write a program to Implement syntactic parsing of a given text	2hrs
14	Write a program to Implement dependency parsing of a given text.	2hrs
15	Write a program to Implement Named Entity Recognition (NER)	2hrs

References:

- 1) Sentiment Analysis and Opinion Mining, Bing Liu, Morgan & Claypool Publishers, May 2012.
- 2) Speech and Language Processing (3rd ed. draft) Dan Jurafsky and James H. Martin
- 3) Natural Language Understanding 2nd Edition, James Allen (Author), Pearson
- 4) Building Microservices with ASP.NET Core ,Kevin Hoffman ,O'Reilly
- 5) Building Microservices: Designing Fine-Grained Systems, Sam Newman ,O'Reilly
- 6) Production-ready Microservices, Susan J. Fowler, O'Reilly

<u>Academic Council Date – June 13, 2024</u> <u>Item No. – 04</u>

Janardan Bhagat Shikshan Prasarak Sanstha's

Arts, Commerce and Science College, New Panvel (Autonomous)

As per National Education Policy - 2020

Sr. No.	Heading	Particulars
1	Title of program	M.Sc. (Information Technology) Part II
2	Eligibility	A candidate for being eligible for admission to the M.Sc. I.T. Part-II, shall have passed M.Sc. I.T. Part-I and should have secured minimum 40%.
3	Duration of program	2 Years
4	Intake Capacity	20
5	Scheme of Examination	60:40
6	Standards of Passing	40%
7	Semesters	4 Semesters
8	Program Academic Level	P.G
9	Pattern	Semester
10	Status	New
11	To be implemented from Academic Year	Academic Year 2024-25

Mrs. I. S. Thakare Head, Department of Information Technology Changu Kana Thakur A.C.S. College, New Panvel (Autonomous)

Prof. (Dr.) S.K. Patil Principal Changu Kana Thakur A.C.S. College, New Panvel (Autonomous)

Preamble

1) Introduction:

The M.Sc. Information Technology programme is started with an aim to make

the learners employable and impart industry oriented training.

2) Aims and Objectives :

The main objectives of the course are:

- To think analytically, creatively and critically in developing robust, extensible and highly maintainable technological solutions to simple and complex problems.
- To apply their knowledge and skills to be employed and excel in IT professional careers and/or to continue their education in IT and/or related post graduate programmes.
- To be capable of managing complex IT projects with consideration of the human, financial and environmental factors.
- To equip postgraduate students with an integrated set of skills that will allow them to develop their professional careers in Information Technology.
- To adhere to the highest standards of ethics, including relevant industry and organizational codes of conduct.
- To communicate effectively with a range of audiences both technical and non-technical.
- Skills to work with higher end applications in internet technologies; also managerial ability to analyze, design, develop and to maintain software development.

3) Learning Outcomes

- Learners will be able to apply the knowledge of mathematics, science and computing in the core information technologies.
- Learners will be able to develop the ability to analyze complex problems in information technology and apply appropriate solutions using critical thinking and problem-solving skills.
- Learners will be able to apply the knowledge of engineering and management principles to manage projects effectively in diverse environments as a member or a leader in the team.
- Learners will be able to Engage in independent and life-long learning for continued professional development.

Abbreviations Used

- POs : Program Outcomes
- PS : Program Structure
- PSOs : Program Specific Outcomes
- COs : Course Outcomes
- TLP : Teaching-Learning Process
- AM : Assessment Method
- DSC : Discipline Specific Core
- DSE : Discipline Specific Elective
- GE : Generic Elective
- OE : Open Elective
- VSC : Vocational Skill Course
- SEC : Skill Enhancement Course
- IKS : Indian Knowledge System
- AEC : Ability Enhancement Course
- VEC : Value Education Course
- OJT : On Job Training (Internship)
- FP : Field project
- CEP : Community engagement and service
- CC : Co-curricular Courses
- RM : Research Methodology
- RP : Research Project
- MJ : Major Course
- MN : Minor Course

Program Outcomes (POs)

РО	POs Statement	Knowledge and	
No.	After completing the Master of Science Program, students will be able to-	Skill	
PO-1	The ability to identify and describe broadly accepted methodologies of science, and different modes of reasoning.	Disciplinary knowledge	
PO-2	An ability to demonstrate proficiency in various instrumentation, modern tools, and advanced techniques to meet industrial expectations and research outputs	Disciplinary knowledge	
PO-3	Ability to identify problems, formulates, and prove hypotheses by applying theoretical knowledge and skills relevant to the discipline.	Problem-solving	
PO-4	The ability to articulate thoughts, research ideas, information, scientific outcomes in oral and in written presentation to range of audience.	Communication skills	
PO-5	A capacity for independent, conceptual, and creative thinking, and critical analysis through the existing methods of enquiry.	Critical thinking	
PO6	Acquisition of skills required for cutting edge research, investigations, field study, documentation, networking, and ability to build logical arguments using scholarly evidence.	Research skills	
PO7	An ability to portray good interpersonal skills with the ability to work collaboratively as part of a team undertaking a range of different team roles.	Teamwork	
PO8	The ability to understand ethical responsibilities and impact of scientific solutions in global, societal, and environmental context and contribute to sustainable development.	Moral and ethical awareness/ multicultural competence	
PO9	An openness to and interest in, life-long learning through directed and self-directed study.	self-directed learning	
PO10	The ability to translate the knowledge and demonstrate the skills required to be employed and successful professional development.	Life-long learning	

Program Specific Outcomes (PSOs)

PSO No.	PSOs Statement After completing the programme in Information Technology, Student will be able to:	Knowledge and Skill
PSO-1	Apply IT in the field of Data Science, AI, Networking, Security and Cloud Computing.	Disciplinary knowledge
PSO-2	Design solutions for complex IT problems.	Problem-solving
PSO-3	Develop research, investigation skills and achieve professional competency in the field of I.T.	Research skills

Syllabus for M. Sc. (Information Technology) Semester III and IV

Choice Based Credit System

Under New Education Policy (NEP) 2020

(To be implemented from the academic year 2024-2025)

Course Structure

No. of Courses	Semester III	Credits	No. of Courses	Semester IV	Credits
Α	Discipline Specific Course (Major)		Α	Discipline Specific Course (Major)	
1	Advanced AI	04	1	Blockchain	04
2	Machine Learning	04	2	Robotic Process Automation	04
3	Cyber Forensics	04	3	Deep Learning	04
4	Practical: Practical of Advanced AI + Practical of Machine Learning	02	4	Practical: Practical of Blockchain + Practical of Robotic Process Automation+ Practical of Deep Learning	02
В	Discipline Specific Course (Elective) (Students will select any 1 out of 2)		В	Discipline Specific Course (Ele (Students will select any 1 out of	
-	Security Breaches and Countermeasures	0.2	-	Human Computer Interaction	02
5	Technical Writing and Entrepreneurship Development	02 5		Security Operations Center	02
	Practical: Practical of Cyber Forensics + Practical of Security Breaches and Countermeasures			-	
6	Practical: Practical of Cyber Forensics + Practical of Technical Writing and Entrepreneurship Development	02	6	-	-
С	Discipline Specific Course(Minor	r)	С	Discipline Specific Course(Min	or)
7	Research Project	04		Project Implementation and Viva	06
	Total Credits	22		Total Credits	22

Semester - III [Under CBCS Scheme]

Course Code	Course Type	Course Title	Credit
PIT3AIT	Major Subject I	Advanced AI	04
PIT3MLT	Major Subject II	Machine Learning	04
PIT3CFT	Major Subject III	Cyber Forensics	04
PIT3PR1	Major Practical	Practical: Practical of Advanced AI + Practical of Machine Learning	02
PIT3SBT		Elective 1: Security Breaches and Countermeasures	02
PIT3TWT	Elective	Elective 2: Technical Writing and Entrepreneurship Development	
PIT3PR2		Elective Practical 1: Practical of Cyber Forensics + Practical of Security Breaches and Countermeasures	02
PIT3PR3	Elective Practical	Elective Practical 1: Practical of Cyber Forensics + Practical of Technical Writing and Entrepreneurship Development	02
PIT3RPP	Research Project	Research Project	04
	·	Total Credits	22

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020 (To be implemented from the academic year 2024-2025)

Major-I

Course Code: PIT3AIT

Course Title: Advanced AI

Course Type: Major-I

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Define the fundamental concepts of Advanced AI and its applications.
CO-2	Explain various machine learning algorithms to solve real-world problems.
CO-3	Determine the process of image formation and the role of camera parameters.
CO-4	Elaborate Q-learning algorithm and Robotic application Domain.

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020

Course Code: PIT3AIT

Course Title: Advanced AI

Unit I:

Tools.

Review of AI: History, foundation and Applications. Traditional AI vs Advanced AI **Expert System and Applications:** Phases in Building Expert System, Expert System Architecture, Expert System versus Traditional Systems, Rule based Expert Systems, Blackboard Systems, Truth Maintenance System, Application of Expert Systems, Shells and

Solving Problems by Searching: Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Heuristic Functions.

Unit II:

Probability Theory: joint probability, conditional probability, Bayes's theorem, probabilities in rules and facts of rule based system, rule based system and Bayesian method.

Machine Learning: Machine Learning basics, Applications of ML, Data Mining Vs Machine Learning Vs Big Data Analytics, Supervised and unsupervised learning, inductive learning, deductive learning, clustering, support vector machines, case based reasoning and learning

Unit III:

AI and Computer Vision: Computer Vision, History of Computer Vision, Image Processing Techniques, Object Detection and Recognition, Image Classification and segmentation, Deep Learning in Computer Vision, Advanced Computer Vision Techniques, Computer Vision with GenAI, Applications of Computer Vision AI.

Intelligent Agents: Agents vs software programs, classification of agents, working of an agent, single agent and multiagent systems, performance evaluation, architecture, agent communication language, applications.

Unit IV:

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction

Reinforcement Learning: Elements of Reinforcement Learning, Limitations and Scope, Q-learning algorithm, History of Reinforcement Learning

Robotics: Introduction, Robot Hardware, Robotic Perception, Planning to Move, Planning Uncertain Movements, Robotic Application Domains.

Reference Books:

- 1. Artificial Intelligence: A Modern Approach, A. Russel, Peter Norvig.
- 2. Artificial Intelligence, Saroj Kaushik, Cengage, 1st Edition, 2019
- 3. Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer
- 4. Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, Second edition

Major II

Course Code: PIT3MLT

Course Title: Machine Learning

Course Type: Major II

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Understand the key issues in Machine Learning and its associated applications in intelligent business and scientific computing.
CO-2	Acquire the knowledge about classification and regression techniques where a learner will be able to explore his skill to generate data base knowledge.
CO-3	Understand and implement the techniques for extracting the knowledge using machine learning methods.
CO-4	Apply the algorithms to a real-world problem, optimize the models learned

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020

Course Code: PIT3MLT

Course Title: Machine Learning

Unit I:

Introduction: Machine learning, Examples of Machine Learning Problems, Structure of Learning, learning versus Designing, Training versus Testing, Characteristics of Machine learning tasks, Predictive and descriptive tasks, Machine learning Models: Geometric Models, Logical Models, and Probabilistic Models. Features: Feature types, Feature Construction and Transformation, Feature Selection.

Unit II:

Classification and Regression: Classification: Binary Classification- Assessing Classification performance, Class probability Estimation Assessing class probability Estimates, Multiclass Classification. **Regression:** Assessing performance of Regression- Error measures, Overfitting- Catalysts for Overfitting, Case study of Polynomial Regression.

Theory of Generalization: Effective number of hypothesis, Bounding the Growth function, VC Dimensions, Regularization theory.

Unit III:

Linear Models: Least Squares method, Multivariate Linear Regression, Regularized Regression, Using Least Square regression for Classification. Perceptron, Support Vector Machines, Soft Margin SVM, Obtaining probabilities from Linear classifiers, Kernel methods for non-Linearity.

Unit IV:

Logic Based and Algebraic Model: Distance Based Models: Neighbours and Examples, Nearest Neighbours Classification, Distance based clustering-K means Algorithm, Hierarchical clustering, Rule Based Models: Rule learning for subgroup discovery, Association rule mining.

Tree Based Models: Decision Trees, Ranking and Probability estimation Trees, Regression trees, Clustering Trees.

Trends In Machine Learning: Model and Symbols-Bagging and Boosting, Multitask learning, Online learning and Sequence Prediction, Data Streams and Active Learning, Deep Learning, Reinforcement Learning.

Reference Books:

- 1. Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Peter Flach, Cambridge University Press, 2012.
- 2. Introduction to Statistical Machine Learning with Applications in R, Hastie, Tibshirani, Friedman, Springer Publication 2nd Edition, 2012.
- 3. Introduction to Machine Learning, Ethem Alpaydin, PHI Publication, 2nd Edition, 2013

Major III

Course Code: PIT3CFT

Course Title: Cyber Forensics

Course Type: Major III

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Explain the cyber forensics with standard operating procedures.
CO-2	Elaborate recovery of the data from the hard disk with legal procedure.
CO-3	Explain recovery and analyse the data using forensics tool
CO-4	Adapt the knowledge of network analysis and use it for analysing the internet attacks.

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020

Course Code: PIT3CFT

Course Title: Cyber Forensics

Unit I:

Computer Forensics: The present Scenario, The Investigation Process, Computers – Searching and Seizing, Electronic Evidence, Procedures to be followed by the first responder.

Unit II:

Setting up a lab for Computer Forensics, Hard Disks and File Systems, Forensics on Windows Machine, Acquire and Duplicate Data

Unit III:

Recovery of deleted files and partitions, Using Access Data FTK and Encase for forensics Investigation, Forensic analysis of Steganography and Image files, Cracking Application passwords.

Unit IV:

Capturing logs and correlating to the events, Network Forensics – Investigating logs and Network traffic, Investigating Wireless and Web Attacks. Email Tracking and Email Crime investigation.

Reference Books:

- 1. EC-Council CHFIv10 Study Guide EC-Council 2018
- 2. The official CHFI Exam 312-49 study Guide Dave Kleiman SYNGRESS 2007
- 3. Digital Forensics and Incident Response Gerard Johansen Packt Publishing 2020
- 4. Practical Cyber Forensics Niranjan Reddy Apress 2019

Major IV

Course Code: PIT3PR1

Course Title: Practical: Practical of Advanced AI + Practical of Machine Learning

Course Type: Major IV Practical

No. of Credits:02

СО	COs Statement	
No.	After completing the Master of Science Program, students will be able to-	
CO-1	Explain the types of python libraries going to be used in AI Algorithms.	
CO-2	Develop a program to retrieve precise output by using Learning methods	
CO-3	Develop machine learning models.	
CO-4	Estimate a program to retrieve precise output by using ANN.	

Module/ Unit	Course Description	Hrs.
1	Design an Expert system using AIML.	2hrs
2	Design a bot using AIML.	2hrs
3	Implement Bayes Theorem using Python.	2hrs
4		
5	Write program to implement Rule Based System.	2hrs
6	Write an application to simulate supervised and un-supervised learning model.	2hrs
7	Write an application to implement Clustering algorithm	2hrs
8	Write a Program to implement BFS algorithm.	2hrs
9	Write a Program to implement DFS algorithm.	2hrs
10	Implementation of Python basic Libraries such as Math, Numpy and Scipy, Pandas and Matplotlib	2hrs
11	Implement Linear Regression: Using scikit-learn, implement and train a linear regression model on a simple dataset.	2hrs
12	Implement K-Means Clustering: Using scikit-learn, implement k- means clustering and visualize the results on a sample dataset.	2hrs
13	Use NLTK or spaCy to preprocess text data (tokenization, stemming, lemmatization). Implement a sentiment analysis classifier using TF-IDF and logistic regression.	2hrs
14	Implement a CNN for image classification using a custom dataset with TensorFlow/Keras.	2hrs
15	Implement a Q-Learning algorithm for a gridworld environment.	2hrs
16	Design a simple machine learning model to train the training instances and test the same.	2hrs
17	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file	2hrs
18	Perform Data Loading, Feature selection (Principal Component analysis) and Feature Scoring and Ranking.	2hrs
19	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.	2hrs
20	Write a program to implement Decision Tree and Random forest with Prediction, Test Score and Confusion Matrix.	2hrs
21	 a. For a given set of training data examples stored in a .CSV file implement Least Square Regression algorithm. b. For a given set of training data examples stored in a.CSV file implement Logistic Regression algorithm 	2hrs

22	Write a program to implement k-Nearest Neighbour algorithm to	2hrs
	classify the iris data set.	
23	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample	2hrs
24	Implement the different Distance methods (Euclidean) with Prediction, Test Score and Confusion Matrix.	2hrs
25	Implement the classification model using clustering for the following techniques with hierarchical clustering with Prediction, Test Score and Confusion Matrix	2hrs
26	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.	2hrs
27	Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.	2hrs
28	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	2hrs
29	Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.	2hrs
30	Perform Text per-processing, Text clustering, classification with Prediction, Test Score and Confusion Matrix.	2hrs

Reference Books:

- 1. Artificial Intelligence: A Modern Approach, A. Russel, Peter Norvig.
- 2. Artificial Intelligence, Saroj Kaushik, Cengage, 1st Edition, 2019
- 3. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivashankar B. Nair, Tata McGrawhill, 3rd Edition
- 4. Introduction to Statistical Machine Learning with Applications in R, Hastie, Tibshirani, Friedman, Springer Publication 2nd Edition, 2012.

Elective

Course Code: PIT3SBT

Course Title: Security Breaches and Countermeasures

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Classify different security breaches that can occur.
CO-2	Identify vulnerabilities in the systems; breach the security of the system, and threats due to malware.
CO-3	Develop social engineering and educate people to be Careful from attacks due to it.
CO-4	Evaluate vulnerabilities in the Web Servers, Applications and newer technologies like mobiles, IoT and computing.

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020

Course Code: PIT3SBT

Course Title: Security Breaches and Countermeasures

Unit I:

Introduction to Security Breaching: Overview of Information Security, Threats and Attack vectors, Concepts of Hacking – Ethical and Unethical, Information Security Controls, Concepts of penetration Testing, Information Security Laws and Standards.

Evaluation Security of IT Organisation: Concepts, Methodology, Tools,

Countermeasures, Penetration Testing.

Network Scanning: Concepts, Scanning beyond IDS and firewalls, Tools, Banner Grabbing, Scanning Techniques, Network Diagrams, penetration testing.

Enumeration: Concepts, Different types of enumeration: Netbios, SNMP, LDAP, NTP, SMTP, DNS, other enumeration techniques, Countermeasures, Penetration Testing.

Unit II:

Analysis of Vulnerability: Concepts, Assessment Solutions, Scoring Systems, Assessment Tools, Assessment Reports.

Breaching System Security: Concepts, Cracking passwords, Escalating privileges, Executing Applications, Hiding files, covering tracks, penetration testing.

Threats due to malware: Concepts, Malware Analysis, Trojan concepts, countermeasures, Virus and worm concepts, anti-malware software, penetration testing.

Network Sniffing: Concepts, countermeasures, sniffing techniques, detection techniques, tools, penetration testing.

Reference Books:

1. CEHv10, Certified Ethical Hacker Study Guide Ric Messier Sybex - Wiley - 2019

- 2. All in One, Certified Ethical Hacker Matt Walker Tata McGraw Hill 2012
- 3. CEH V10: EC-Council Certified Ethical Hacker Complete Training Guide I.P. Specialist IPSPECIALIST 2018.

Elective II

Course Code: PIT3TWT

Course Title: Technical Writing and Entrepreneurship Development

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Develop technical documents that meet the requirements with standard guidelines.
CO-2	Write Better Quality Content Which Ranks faster at Search Engines.
CO-3	Evaluate the essentials parameters of effective Social Media Pages.
CO-4	Understand importance of innovation and entrepreneurship.

Syllabus for M. Sc. (Information Technology) Semester III Choice Based Credit System Under New Education Policy (NEP) 2020

Course Code: PIT3TWT

Course Title: Technical Writing and Entrepreneurship Development

Unit I:

Introduction to Technical Communication: What Is Technical Communication? The Challenges of Producing Technical Communication, Characteristics of a Technical Document, Measures of Excellence in Technical Documents, Skills and Qualities Shared by Successful Workplace Communicators, How Communication Skills and Qualities Affect Your Career?

Writing Technical Documents: Planning, Drafting, Revising, Editing, Proofreading Writing Collaboratively: Advantages and Disadvantages of Collaboration, Managing Projects, Conducting Meetings, Using Social Media and Other Electronic Tools in Collaboration, Importance of Word Press Website, Gender and Collaboration, Culture and Collaboration.

Introduction to Content Writing: Types of Content, Exploring Content Publication Channels. Distribution of your content across various channels.

Researching Your Subject: Understanding the Differences Between Academic and Workplace Research, Understanding the Research Process, Conducting Secondary Research, Conducting Primary Research,

Research and Documentation: Literature Reviews, Interviewing for Information, Documenting Sources, Copyright, Paraphrasing, Questionnaires.

Report Components: Abstracts, Introductions, Tables of Contents, Executive Summaries, Feasibility Reports, Investigative Reports, Laboratory Reports, Test Reports, Trip Reports, Trouble Reports.

Unit II:

Writing Proposals: Understanding the Process of Writing Proposals, The Logistics of Proposals, The "Deliverables" of Proposals, Persuasion and Proposals, Writing a Proposal, The Structure of the Proposal.

Plagiarism: What is Plagiarism? How to avoid writing plagiarism content?

Innovation management: an introduction: The importance of innovation, Models of innovation, Innovation as a management process. **Market adoption and technology diffusion:** Time lag between innovation and useable product, Innovation and the market, Innovation and market vision, Analysing internet search data to help adoption and forecasting sales, Innovative new products and consumption patterns, Crowd sourcing for new product ideas, Frugal innovation and ideas from everywhere, Innovation diffusion theories

Managing intellectual property: Intellectual property, Trade secrets, An introduction to patents, Trademarks, Brand names, Copyright

Management of research and development: What is research and development?, R&D management and the industrial context, R&D investment and company success, Classifying R&D, R&D management and its link with business strategy, Strategic pressures on R&D, Which business to support and how?, Allocation of funds to R&D, Level of R&D expenditure

Reference Books:

- 1. Technical Communication, Mike Markel, Bedford/St. Martin's publication, 11th edition, 2014.
- 2. Innovation Management and New Product Development, Paul Trott, Pearson publication, 6th edition, 2017.
- 3. Innovation and Entrepreneurship, Peter Drucker, Harper Business Publication, 3rd edition, 2009.
- 4. Handbook of Technical Writing, Gerald J. Alred , Charles T. Brusaw , Walter E. Oliu Bedford/St. Martin's publication, 09th edition, 2008

Course Code: PIT3PR2

Course Title: Practical: Practical of Cyber Forensics + Practical of Security Breaches and Countermeasures

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Elaborate recovery of the data from the hard disk with legal procedure.
CO-2	Explain recovery and analyse the data using forensics tool
CO-3	Make use of tools to perform foot printing and reconnaissance
CO-4	Determine use of Enumeration and network scanning tools

Module/Unit	Course Description	Hrs.
Module/Unit 1	Course DescriptionUse the following tools to perform footprinting and reconnaissancei. Recon-ng (Using Kali Linux)ii. FOCA Tooliii. Windows Command Line Utilities• Ping• Tracert using Ping• Tracert• NSLookupiv. Website Copier Tool – HTTrack v. Metasploit (for information gathering)vi. Whois Lookup Tools for Mobile – DNS Tools, Whois, Ultra Tools Mobile 	Hrs. 2hrs
2	Scan the network using the following tools: i. Hping2 / Hping3 ii. Advanced IP Scanner iii. Angry IP Scanner iv. Masscan v. NEET vi. CurrPorts vii. Colasoft Packet Builder viii. The Dude	2hrs
3	 b. Scan the network using the following tools: i. Hping2 / Hping3 ii. Advanced IP Scanner iii. Angry IP Scanner iv. Masscan v. NEET vi. CurrPorts vii. Colasoft Packet Builder 	2hrs
4	 c. Use Proxy Workbench to see the data passing through it and save the data to file. d. Perform Network Discovery using the following tools: Solar Wind Network Topology Mapper OpManager Network View LANState Pro Use the following censorship circumvention tools: Alkasir Tails OS Use Scanning Tools for Mobile – Network Scanner, Fing – Network Tool, Network Discovery Tool, Port Droid Tool 	2hrs
5	e. Use the following censorship circumvention tools:i. Alkasir	2hrs

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

	ii. Tails OS	
	f. Use Scanning Tools for Mobile – Network Scanner, Fing –	
	Network Tool, Network Discovery Tool, Port Droid Tool.	
6	a. Perform Enumeration using the following tools:	
	i. Nmap	
	ii. NetBIOS Enumeration Tool	
	iii. SuperScan Software	
	iv. Hyena	
	v. SoftPerfect Network Scanner Tool	
	vi. OpUtils	2hrs
	vii. SolarWinds Engineer's Toolset	
	viii. Wireshark	
	b. Perform the vulnerability analysis using the following	
	tools:	
	i. Nessus	
	ii. OpenVas	
7	Perform mobile network scanning using NESSUS.	2hrs
8	b. Perform the System Hacking using the following tools:	21115
ð		
	i. Winrtgen	
	ii. PWDump	
	iii. Ophcrack	
	iv. Flexispy	
	v. NTFS Stream Manipulation	2hrs
	vi. ADS Spy	
	vii. Snow	
	viii. Quickstego	
	ix. Clearing Audit Policies	
	x. Clearing Logs	
9	a. Use wireshark to sniff the network.	
	b. Use SMAC for MAC Spoofing.	•1
	c. Use Caspa Network Analyser.	2hrs
	d. Use Omnipeek Network Analyzer	
10	a. Use Social Engineering Toolkit on Kali Linux to perform	
10	Social Engineering using Kali Linux.	
	b. Perform the DDOS attack using the following tools:	
	i. HOIC	
	ii. LOIC	2hrs
	ii. HULK	21115
	iv. Metasploit	
	±	
	c. Using Burp Suite to inspect and modify traffic between the	
	browser and target application.	
11	a. Perform Web App Scanning using OWASP Zed Proxy.	
	b. Use droid sheep on mobile for session hijacking	
	c. Demonstrate the use of the following firewalls:	
	i. Zonealarm and analyse using Firewall Analyzer.	2hrs
	ii. Comodo Firewall.	
	d. Use HoneyBOT to capture malicious network traffic.	
12	Use the following tools to protect attacks on the web servers:	2hrs
	i. ID Server.	

29	Network Forensic Analysis Tool (NetworkMiner)	2hrs
28	Scan Registry using RegScanner	2hrs
	Services, s. IDs [Cain & Abel]	
27	a. Managing Remote Registry, Network Enumeration,	2hrs
26	Performing Sniffing [Cain & Abel]	2hrs
25	Performing Password Cracking [Cain & Abel]	2hrs
24	Using Steganography Tools [S-Tools]	2hrs
23	Using Data Acquisition Tools [ProDiscover Pro]	2hrs
22	Using Log & Traffic Capturing & Analysis Tools [Wireshark]	2hrs
20	Using Web attack detectiontools [Wireshark]	2hrs 2hrs
20	(AccessData FTK) Using File Recovery Tools [FTK Imager] Creating Image	2hrs
19	Using Forensic Toolkit(FTK) &Writing report usingFTK	2hrs
18	Forensics Investigation Using Encase	2hrs
17	Explore Windows forensic tools (OSForensics)	2hrs
10	istat, fls and img_stat)	21115
16	File System Analysis using The SleuthKit (Autospy, fsstat,	2hrs
	TrueCrypt CrypTool	
	MD5 Calculator	2hrs
	HashCalc Advanced Encryption Package	
15	Use the following tools for cryptography	
14	Use Aircrack-ng suite for wireless hacking and countermeasures.	2hrs
	ii. Havij iii. BBQSQL	
	i. Tyrant SQL	2hrs
	b. Demonstrate the following tools to perform SQL Injection:	
13	a. Protect the Web Application using dotDefender.	
	ii. Microsoft Baseline Security Analyser.iii. Syhunt Hybrid.	

30	Dump Memory contents using PMdump	2hrs

Reference Books:

- 1. CEHv10, Certified Ethical Hacker Study Guide Ric Messier Sybex Wiley 2019
- 2. All in One, Certified Ethical Hacker Matt Walker Tata McGraw Hill 2012
- 3. CEH V10: EC-Council Certified Ethical Hacker Complete Training Guide I.P. Specialist IPSPECIALIST 2018.
- 4. EC-Council CHFIv10 Study Guide EC-Council 2018

Course Code: PIT3PR3

Course Title: Practical: Practical of Cyber Forensics + Practical of Technical Writing and Entrepreneurship Development

Course Type: DSC

No. of Credits: 02

СО	COs Statement	
No.	After completing the Master of Science Program, students will be able to-	
CO-1	Elaborate recovery of the data from the hard disk with legal procedure.	
CO-2	Explain recovery and analyse the data using forensics tool	
CO-3	Build effective Blogs and Social Media Pages.	
CO-4	Create Resumes, Research Proposals and Research Report.	

Module/Unit	Course Description	Hrs.
1	File System Analysis using The SleuthKit (Autospy, fsstat,	2hrs
	istat, fls and img_stat)	21115
2	Explore Windows forensic tools (OSForensics)	2hrs
3	Forensics Investigation Using Encase	2hrs
4	Using Forensic Toolkit(FTK) &Writing report usingFTK (AccessData FTK)	2hrs
5	Using File Recovery Tools [FTK Imager] Creating Image	2hrs
6	Using Web attack detectiontools [Wireshark]	2hrs
7	Using Log & Traffic Capturing & Analysis Tools [Wireshark]	2hrs
8	Using Data Acquisition Tools [ProDiscover Pro]	2hrs
9	Using Steganography Tools [S-Tools]	2hrs
10	Performing Password Cracking [Cain & Abel]	2hrs
11	Performing Sniffing [Cain & Abel]	2hrs
12	a. Managing Remote Registry, Network Enumeration, Services, s. IDs [Cain & Abel]	2hrs
13	Scan Registry using RegScanner	2hrs
14	Network Forensic Analysis Tool (NetworkMiner)	2hrs
15	Dump Memory contents using PMdump	2hrs
16	Writing Articles (Business, Newsletters). Preparing	2hrs
	advertisements for popularization of products and news writing	
17	Preparing and Writing different Research Proposals	2hrs
18	Creating Feasibility Report, Formal Reports, Trip Reports	2hrs
19	Creating Recommendation Reports	2hrs
20	Writing Acceptance and Refusal Letter, Resignation Letters	2hrs
21	Writing Application Letter (e.g. College Student Applying for an Internship)	2hrs
22	Conducting meeting – Purpose, procedure, participation, physical arrangements, recording and writing of minutes of meeting	2hrs
23	Creating Resumes.	2hrs
24	Creating Simple own Blog.	2hrs
25	Creating Content for Blogs and Social Media.	2hrs
26	Preparing and writing Abstract, Literature Review.	2hrs
27	Creating Questionnaire for research.	2hrs

28	Conducting Primary and Secondary Research.	2hrs
29	Conducting market survey to know the demands for different products	2hrs
30	Visit to entrepreneurship institute/ case study of successful entrepreneurs	2hrs

- 1. 1 EC-Council CHFIv10 Study Guide EC-Council 2018
- 2. Handbook of Technical Writing, Gerald J. Alred , Charles T. Brusaw , Walter E. Oliu, Bedford/St. Martin's publication, 09th edition, 2008

Minor

Course Code : PIT3RPP

Course Title : Research Project

Course Type: DSC

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Identify a problem definition.
CO-2	Estimate system requirement.
CO-3	Design data flow diagram.
CO-4	Plan the system design phase in SDLC.

Course Code: PIT3RPP

Course Title: Research Project

Course Description:

Project Implementation

Chapter 1 to 4 should be submitted in Semester III in spiral binding. These chapter have also to be included in Semester IV report. Semester IV report has to be hard bound with golden embossing. Students will be evaluated based on the dissertation in semester III and dissertation and viva voce in Semester IV.

I. OBJECTIVES

- Describe the Systems Development Life Cycle (SDLC).
- Evaluate systems requirements.
- Complete a problem definition.
- Evaluate a problem definition.
- Determine how to collect information to determine requirements.
- Perform and evaluate feasibility studies like cost-benefit analysis, technical feasibility, time feasibility and Operational feasibility for the project.
- Work on data collection methods for fact finding.
- Construct and evaluate data flow diagrams.
- Construct and evaluate data dictionaries.
- Evaluate methods of process description to include structured English, decision tables and decision trees.
- Evaluate alternative tools for the analysis process.

• Create and evaluate such alternative graphical tools as systems flow charts and state transition diagrams.

- Decide the S/W requirement specifications and H/W requirement specifications.
- Plan the systems design phase of the SDLC.
- Distinguish between logical and physical design requirements.
- Design and evaluate system outputs.
- Design and evaluate systems inputs.
- Design and evaluate validity checks for input data.
- Design and evaluate user interfaces for input.
- Design and evaluate file structures to include the use of indexes.
- Estimate storage requirements.
- Explain the various file update processes based on the standard file organizations.
- Decide various data structures.
- Construct and evaluate entity-relationship (ER) diagrams for RDBMS related projects.
- Perform normalization for the unnormalized tables for RDBMS related projects
- Decide the various processing systems to include distributed, client/server, online and others.
- Perform project cost estimates using various techniques.
- Schedule projects using both GANTT and PERT charts.
- Perform coding for the project.

- Documentation requirements and prepare and evaluate systems documentation.
- Perform various systems testing techniques/strategies to include the phases of testing.
- Systems implementation and its key problems.
- Generate various reports.
- Be able to prepare and evaluate a final report.
- Brief the maintenance procedures and the role of configuration management in operations.
- To decide the future scope and further enhancement of the system.
- Plan for several appendices to be placed in support with the project report documentation.
- Decide the various processing systems to include distributed, client/server, online and others.
- Perform project cost estimates using various techniques.
- Schedule projects using both GANTT and PERT charts.
- Perform coding for the project.
- Documentation requirements and prepare and evaluate systems documentation.
- Perform various systems testing techniques/strategies to include the phases of testing.
- Systems implementation and its key problems.
- Generate various reports.
- Be able to prepare and evaluate a final report.
- Brief the maintenance procedures and the role of configuration management in operations.
- To decide the future scope and further enhancement of the system.
- Plan for several appendices to be placed in support with the project report documentation.
- Work effectively as an individual or as a team member to produce correct, efficient, wellorganized and documented programs in a reasonable time.

• Recognize problems that are amenable to computer solutions, and knowledge of the tool necessary for solving such problems.

- Develop of the ability to assess the implications of work performed.
- Get good exposure and command in one or more application areas and on the software
- Develop quality software using the software engineering principles
- Develop of the ability to communicate effectively.

II. Type of the Project

The majority of the students are expected to work on a real-life project preferably in some industry/ Research and Development Laboratories/Educational Institution/Software Company. Students are encouraged to work in the areas listed below. However, it is not mandatory for a student to work on a real-life project. The student can formulate a project problem with the help of her/his Guide and submit the project proposal of the same. Approval of the project proposal is mandatory. If approved, the student can commence working on it, and complete it. Use the latest versions of the software packages for the development of the project.

III. SOFTWARE AND BROAD AREAS OF APPLICATION FRONT END

IV. Introduction

The project report should be documented with scientific approach to the solution of the problem that the students have sought to address. The project report should be prepared in order to solve the problem in a methodical and professional manner, making due references to appropriate techniques, technologies and professional standards. The student should start the documentation process from the first phase of software development so that one can easily identify the issues to be focused upon in the ultimate project report. The student should also include the details from the project diary, in which they will record the progress of their project throughout the course. The project report should contain enough details to enable examiners to

evaluate the work. The important points should be highlighted in the body of the report, with details often referred to appendices. **1.1 PROJECT REPORT: Title Page** Original Copy of the Approved Proforma of the Project Proposal Certificate of Authenticated work Role and Responsibility Form Abstract Acknowledgement Table of Contents Table of Figures **CHAPTER 1: INTRODUCTION** 1.1 Background 1.2 Objectives 1.3 Purpose, Scope, and Applicability 1.3.1 Purpose 1.3.2 Scope 1.3.3 Applicability 1.4 Achievements 1.5 Organisation of Report **CHAPTER 2: SURVEY OF TECHNOLOGIES CHAPTER 3: REOUIREMENTS AND ANALYSIS** 3.1 Problem Definition 3.2 Requirements Specification 3.3 Planning and Scheduling 3.4 Software and Hardware Requirements 3.5 Preliminary Product Description **3.6** Conceptual Models **CHAPTER 4: SYSTEM DESIGN** 4.1 Basic Modules 4.2 Data Design 4.2.1 Schema Design 4.2.2 Data Integrity and Constraints 4.3 Procedural Design 4.3.1 Logic Diagrams 4.3.2 Data Structures 4.3.3 Algorithms Design 4.4 User interface design **4.5 Security Issues** 4.6 Test Cases Design The documentation should use tools like star UML, Visuo for windows, and Rational Rose for design as part of Project Management Practical Course. The documentation should be spiral bound for semester III and the entire documentation should be hard bound during semester IV

Semester - IV [Under CBCS Scheme]

Course Code	Course Type	Course Title	Credit
PIT4BCT	Major Subject I	Blockchain	04
PIT4RPT	Major Subject II	Robotic Process Automation	04
PIT4DLT	Major Subject III	Deep Learning	04
PIT4PR1	Major Practical	Practical: Practical of Blockchain + Practical of Robotic Process Automation + Practical of Deep Learning	02
PIT4HCT	Elective	Elective 1: Human Computer Interaction	02
PIT4SOT		Elective 2: Security Operations Center	
PIT4PIP	Project Implementation	Project Implementation	06
		Total Credits	22

Major I

Course Code: PIT4BCT

Course Title: Blockchain

Course Type: Major I

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Define the structure of blockchain system such as bitcoin and ethereum.
CO-2	Elaborate the use of different components in Solidity Programming.
CO-3	Explain concepts of Hyper ledger, Smart Contracts & tokens, Mining Ether and crypto economics.
CO-4	Elaborate the development of blockchain, EthereumD, Dapp applications.

Course Code: PIT4BCT

Course Title: Blockchain

Unit I:

Blockchain: Introduction, History, Centralised versus Decentralised systems, Layers of blockchain, Importance of blockchain, Blockchain uses and use cases.

Working of Blockchain: Blockchain foundation, Cryptography, Game Theory, Computer Science Engineering, Properties of blockchain solutions, blockchain transactions, distributed consensus mechanisms, Blockchain mechanisms, Scaling

blockchain

Working of Bitcoin: Money, Bitcoin, Bitcoin blockchain, bitcoin network, bitcoin scripts, Full Nodes and SVPs, Bitcoin wallets.

Unit II:

Ethereum: three parts of blockchain, Ether as currency and commodity, Building trustless systems, Smart contracts, Ethereum Virtual Machine, The Mist browser, Wallets as a Computing Metaphor, The Bank Teller Metaphor, Breaking with Banking History, How Encryption Leads to Trust, System Requirements, Using Parity with Geth, Anonymity in Cryptocurrency, Central Bank Network, Virtual Machines, EVM

Applications, State Machines, Guts of the EVM, Blocks, Mining's Place in the State Transition Function, Renting Time on the EVM, Gas, Working with Gas, Accounts, Transactions, and Messages, Transactions and Messages, Estimating Gas Fees for Operations, Opcodes in the EVM.

Unit III:

Hyperledger: Overview, Fabric, composer, installing hyperledger fabric and composer, deploying, running the network, error troubleshooting.

Smart Contracts and Tokens: EVM as Back End, Assets Backed by Anything, Cryptocurrency Is a Measure of Time, Function of Collectibles in Human Systems, Platforms for High-Value Digital Collectibles, Tokens as Category of Smart Contract, Creating a Token, Deploying the Contract, Playing with Contracts.

Unit IV:

Cryptoecnomics: Introduction, Usefulness of cryptoeconomics, Speed of blocks, Ether Issuance scheme, Common Attack Scenarios. **Blockchain Application Development:** Decentralized Applications, Blockchain Application Development, Interacting with the Bitcoin Blockchain, Interacting Programmatically with Ethereum—Sending Transactions, Creating a Smart Contract, Executing Smart Contract Functions, Public vs. Private Blockchains, Decentralized Application Architecture,

Building an EthereumDApp: The DApp, Setting Up a Private Ethereum Network, Creating the Smart Contract, Deploying the Smart Contract, Client Application.

- 1. Beginning BlockchainA Beginner's Guide to Building Blockchain Solutions Bikramaditya Singhal, GautamDhameja, PriyansuSekhar Panda Apress 2018
- 2. Introducing Ethereum and Solidity Chris DannenApress 2017
- 3. The Blockchain Developer EladElromApress 2019
- 4. Mastering Ethereum Andreas M. Antonopoulos Dr. Gavin Wood O'Reilly First 2018
- Blockchain Enabled Applications Vikram Dhillon David Metcalf Max Hooper Apress 2017

Major II

Course Code : PIT4RPT

Course Title : Robotics Process Automation

Course Type: Major II

No. of Credits: 04

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Define the scope and techniques of robotic process automation using UIPath
	Studio.
CO-2	Explain the concept of sequence, flowchart and control flow used to manipulate
	data.
CO-3	Make use of Exception Handling, Debugging and logging to handle user events
	and Assistant bots.
CO-4	Elaborate the deployment and maintenance of bot along with maintaining the
	code.

Course Code: PIT4RPT

Course Title: Robotics Process Automation

Unit I: Robotic Process Automation: Scope and techniques of automation, About UiPath **Record and Play:** UiPath stack, Downloading and installing UiPath Studio, Learning UiPath Studio, Task recorder, Step-by-step examples using the recorder.

Unit II: Sequence, Flowchart, and Control Flow: Sequencing the workflow, Activities, Control flow, various types of loops, and decision making, Step-by-step example using Sequence and Flowchart, Step-by-step example using Sequence and Control flow Data Manipulation: Variables and scope, Collections, Arguments – Purpose and use, Data table usage with examples, Clipboard management, File operation with step-by-step example, CSV/Excel to data table and vice versa (with a step-by-step example)

Unit III: Taking Control of the Controls : Finding and attaching windows, Finding the control, Techniques for waiting for a control, Act on controls – mouse and keyboard activities, Working with UiExplorer, Handling events, Revisit recorder, Screen Scraping, When to use OCR, Types of OCR available, How to use OCR, Avoiding typical failure points Tame that Application with Plugins and Extensions: Terminal plugin, SAP automation, Java plugin, Citrix automation, Mail plugin, PDF plugin, Web integration, Excel and Word plugins, Credential management, Extensions – Java, Chrome, Firefox, and Silverlight

Unit IV: Handling User Events and Assistant Bots: What are assistant bots?, Monitoring system event triggers, Hotkey trigger, Mouse trigger, System trigger ,Monitoring image and element triggers, An example of monitoring email, Example of monitoring a copying event and blocking it, Launching an assistant bot on a keyboard event

Exception Handling, Debugging, and Logging: Exception handling, Common exceptions and ways to handle them, Logging and taking screenshots, Debugging techniques, Collecting crash dumps, Error reporting

- 1. Learning Robotic Process Automation Alok Mani TripathiPackt 1st 2018
- 2. Robotic Process Automation Tools, Process Automation and their benefits:
- 3. Understanding RPA and Intelligent Automation Srikanth Merianda Createspace Independent Publishing 1st 2018

Major III

Course Code : PIT4DLT

Course Title : Deep Learning

Course Type: Major III

No. of Credits:04

СО	COs Statement
No.	After completing the Bachelor of Science Program, students will be able to-
CO-1	Examine basics of mathematical foundation that will help the learner to understand the concepts of Deep Learning.
CO-2	Define and describe model of deep learning
CO-3	Design and implement various deep supervised learning architectures for text & image data.
CO-4	Design and implement various deep learning models and architectures.

Course Code : PIT4DLT

Course Title : Deep Learning

Unit I:

Applied Math and Machine Learning Basics: Linear Algebra: Scalars, Vectors, Matrices and Tensors, Multiplying Matrices and Vectors, Identity and Inverse Matrices, Linear Dependence and Span, norms, special matrices and vectors, eigen decompositions. **Numerical Computation:** Overflow and under flow, poor conditioning, Gradient Based Optimization, Constraint optimization.

Unit II:

Deep Networks: Deep feedforward network , regularization for deep learning , Optimization for Training deep models

Unit III:

Convolutional Networks, Sequence Modelling, Applications

Unit IV:

Deep Learning Research: Linear Factor Models, Autoencoders, representation learning

- 1. Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courvile an MIT Press book 1st 2016
- 2. Fundamentals of Deep Learning Nikhil Buduma O'Reilly 1st 2017
- 3. Deep Learning: Methods and Applications Deng & Yu Now Publishers 1st 2013
- 4. Deep Learning CookBook Douwe Osinga O'Reilly 1st 2017

Major IV

Course Code: PIT4PR1

Course Title: Practical: Practical of Blockchain + Practical of Robotic Process Automation + Practical of Deep Learning

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Bachelor of Science Program, students will be able to-
CO-1	Design programs for blockchain in Python.
CO-2	Create blockchain and exhibit its use.
CO-3	Develop Automation of any process using recording and applications on excel file.
CO-4	Make use of tools to design various interface.

Module/Unit	Course Description	Hrs.
1	 Write the following programs for Blockchain in Python: a. A simple client class that generates the private and public keys by using the built-in Python RSA algorithm and test it. A transaction class to send and receive money and test it. 	2 hrs
2	 Write the following programs for Blockchain in Python: a. Create multiple transactions and display them. Create a blockchain, a genesis block and execute it. 	2 hrs
3	Write the following programs for Blockchain in Python:a. Create a mining function and test it.Add blocks to the miner and dump the blockchain.	2 hrs
4	Install and configure Go Ethereum and the Mist browser. Develop and test a sample application.	2 hrs
5	Implement and demonstrate the use of the following in Solidity: Variable, Operators, Loops, Decision Making, Strings, Arrays, Enums, Structs, Mappings, Conversions, Ether Units, Special Variables.	2 hrs
6	Implement and demonstrate the use of the following in Solidity:Functions, Function Modifiers, View functions, Pure Functions, Fallback Function, Function Overloading, Mathematical functions, Cryptographic functions.	2 hrs
7	Implement and demonstrate the use of the following in Solidity: Withdrawal Pattern, Restricted Access.	2 hrs
8	Implement and demonstrate the use of the following in Solidity: Libraries, Assembly, Events, Error handling.	2 hrs
9	Implement and demonstrate the use of the following in Solidity: Libraries, Assembly, Events, Error handling.	2 hrs
10	Install hyperledger fabric and composer. Deploy and execute the application.	2 hrs
11	a. Create a simple sequence based project.b. Create a flowchart-based project.	2 hrs
12	Create an UiPath Robot which can empty a folder in Gmail solely on basis of recording.	2 hrs
13	Automate UiPath Number Calculation (Subtraction, Multiplication, Division of numbers).	2 hrs

14	Create an automation UiPath project using different types of variables (number, datetime, Boolean, generic, array, data table)	2 hrs
15	Create an automation UiPath Project using decision statements.	2 hrs
16	Create an automation UiPath Project using looping statements.	2 hrs
17	a. Automate any process using basic recording.b. Automate any process using desktop recording.	2 hrs
18	Consider an array of names. We have to find out how many of them start with the letter "a". Create an automation where the number of names starting with "a" is counted and the result is displayed.	2 hrs
19	Create an application automating the read, write and append operation on excel file.	2 hrs
20	Automate the process to extract data from an excel file into a data table and vice versa	2 hrs
21	Performing matrix multiplication using TensorFlow	2 hrs
22	Finding eigen vectors and eigen values using TensorFlow	2 hrs
23	Solving XOR problem using deep feed forward network.	2 hrs
24	Implementing deep neural network for performing binary classification task.	2 hrs
25	Using deep feed forward network with two hidden layers for performing multiclass classification and predicting the class.	2 hrs
26	Using a deep feed forward network with two hidden layers for performing classification and predicting the probability of class.	2 hrs
27	Using a deep feed forward network with two hidden layers for performing linear regression and predicting values.	2 hrs
28	Evaluating feed forward deep network for regression using KFold cross validation.	2 hrs

29	Evaluating feed forward deep network for multiclass Classification using KFold cross-validation.	2 hrs
30	Implementing regularization to avoid overfitting in binary classification.	2 hrs

- 1. Beginning BlockchainA Beginner's Guide to Building Blockchain Solutions Bikramaditya Singhal, GautamDhameja, PriyansuSekhar Panda Apress 2018
- 2. Introducing Ethereum and Solidity Chris DannenApress 2017
- 3. The Blockchain Developer EladElromApress 2019
- 4. Mastering Ethereum Andreas M. Antonopoulos Dr. Gavin Wood O'Reilly First 2018
- 5. Blockchain Enabled Applications Vikram Dhillon David Metcalf Max Hooper Apress 2017
- 6. Learning Robotic Process Automation Alok Mani TripathiPackt 1st 2018
- 7. Fundamentals of Deep Learning Nikhil Buduma O'Reilly 1st 2017
- Deep Learning: Methods and Applications Deng & Yu Now Publishers 1st 2013

Discipline Specific Course (Elective)

Course Code : PIT4HCT

Course Title : Human Computer Interaction

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Bachelor of Science Program, students will be able to-
CO-1	Define HCI principles that influence a system's interface design.
CO-2	Explain techniques used for any of the proposed systems.
CO-3	Explain the different design implementation systems.
CO-4	Elaborate different evaluation techniques.

Course Code : PIT4HCT

Course Title : Human Computer Interaction

Unit I :

The Interaction: Models of interaction, Design Focus, Frameworks and HCI, Ergonomics, Interaction styles, Elements of the WIMP interface, Interactivity **Paradigms:** Introduction, Paradigms for interaction.

Interaction design basics: What is design? The process of design, User focus, Cultural probes, Navigation design, the big button trap, Modes, Screen design and layout, Alignment and layout matters, Checking screen colours, Iteration and prototyping

HCI in the software process: The software life cycle, Usability engineering, Iterative design and prototyping, Prototyping in practice, Design rationale.

Unit II :

Design: Principles to support usability, Standards, Guidelines, Golden rules and heuristics, HCI patterns **Implementation support**: Elements of windowing systems, Programming the application, Going with the grain, Using toolkits, User interface management systems **Evaluation techniques**: What is evaluation? Goals of evaluation, Evaluation through expert analysis, Evaluation through user participation, Choosing an evaluation method.

- 1. Human Computer Interaction. Alan Dix, Janet Fincay, Gre Goryd, Abowd, Russell Bealg, Pearson Education.
- 2. Interaction Design Prece, Rogers, Sharps. Wiley Dreamtech.
- 3. User Interface Design, Soren Lauesen, Pearson Education.

Discipline Specific Course (Elective)

Course Code: PIT4SOT

Course Title: Security Operations Center

Course Type: DSC

No. of Credits: 02

СО	COs Statement
No.	After completing the Master of Science Program, students will be able to-
CO-1	Classify different security breaches that can occur.
CO-2	Identify vulnerabilities in the systems, breach the security of the system, and threats due to malware.
CO-3	Develop social engineering and educate people to be Careful from attacks due to it.
CO-4	Evaluate vulnerabilities in the Web Servers, Applications and newer technologies like mobiles, IoT and computing.

Course Code : PIT4SOT

Course Title : Security Operations Center

Unit I:

Introduction to Security Operations Management: Foundation Topics Introduction to Identity and Access Management, Phases of the Identity and Access Lifecycle, Registration and Identity Validation, Privileges Provisioning, Access Review, Access Revocation, Password Management, Password Creation, of Cryptography and Public Key Infrastructure (PKI): Cryptography Ciphers and Keys Ciphers Keys Block and Stream Ciphers Symmetric and Asymmetric Algorithms

Introduction to Virtual Private Networks (VPNs) What Are VPNs? Site-to-site vs. Remote-Access VPNs

Endpoint Security Technologies: Antimalware and Antivirus Software Host-Based Firewalls and Host-Based Intrusion Prevention

Threat Analysis: What Is the CIA Triad: Confidentiality, Integrity, and Availability?

Threat Modeling Defining and Analyzing the Attack

Vector The Attack Scope Exam Preparation Tasks

Forensics: Introduction to Cybersecurity Forensics The Role of Attribution in a Cybersecurity Investigation

Fundamentals of Intrusion Analysis: Common Artifact Elements and Sources of Security Events False Positives, False Negatives, True Positives, and True Negatives, Understanding Regular Expressions Protocols

Unit II :

Introduction to Incident Response and the Incident Handling Process Introduction to Incident Response: What Are Events and Incidents? The Incident Response Plan The Incident Response Process ,The Preparation Phase The Detection and Analysis Phase Incident Response Teams: Computer Security Incident Response Teams (CSIRTs), Product Security Incident Response Teams

Compliance Frameworks: Payment Card Industry Data Security Standard (PCI DSS)

Network and Host Profiling: Network Profiling Throughput Measuring Throughput Used Ports Session Duration Critical Asset

The Art of Data and Event Analysis: Normalizing Data Interpreting Common Data Values into a Universal Format Using the 5-Tuple Correlation to Respond to Security Incidents Intrusion Event Categories Diamond Model of Intrusion Cyber Kill Chain Model Reconnaissance Types of Attacks and Vulnerabilities:

Security Evasion Techniques: Key Encryption and Tunneling Concepts Resource Exhaustion

- 1. CCNA Cyber Ops SECOPS 210-255 Official Cert Guide Omar Santos, Joseph Muniz CISCO 1st 2017
- CCNA Cyber Ops SECFND 210-250 Official Cert Guide Omar Santos, Joseph Muniz CISCO 1st 2017
- 3. CCNA Cyber security Operations Companion Guide CISCO 1st 2018

Project Implementation

Course Code: PIT4PIP

Course Title: Project Implementation

Course Type: Project Implementation

No. of Credits: 06

CO No.	COs Statement
	After completing the Bachelor of Science Program, students will be able to-
CO-1	Design user interface for input
CO-2	Develop coding for the system
CO-3	Examine various system testing.
CO-4	Predict the future scope of project

Course Code : PIT4PIP

Course Title : Project Implementation

Course Description:

Goals of the course Project Documentation and Viva-Voce The student should:

- be able to apply relevant knowledge and abilities, within the main field of study, to a given
- problem
- within given constraints, even with limited information, independently analyse and discuss
- complex inquiries/problems and handle larger problems on the advanced level within the
- main field of study
- reflect on, evaluate and critically review one's own and others' scientific results
- be able to document and present one's own work with strict requirements on structure,
- format, and language usage
- be able to identify one's need for further knowledge and continuously develop one's own knowledge.

To start the project:

- Start thinking early in the programme about suitable projects.
- Read the instructions for the project.
- Attend and listen to other student's final oral presentations.
- Look at the finished reports.
- Talk to senior master students.
- Attend possible information events (workshops / seminars / conferences etc.) about the related topics.

Application and approval:

- Read all the detailed information about project.
- Finalise finding a place and supervisor.
- Check with the coordinator about subject/project, place and supervisor.
- Write the project proposal and plan along with the supervisor.
- Fill out the application together with the supervisor.
- Hand over the complete application, proposal and plan to the coordinator.

• Get an acknowledgement and approval from the coordinator to start the project. During the project:

• Search, gather and read information and literature about the theory.

- Document well the practical work and your results.
- Take part in seminars and the running follow-ups/supervision.
- Think early on about disposition and writing of the final report.
- Discuss your thoughts with the supervisor and others.
- Read the SOP and the rest you need again.
- Plan for and do the mid-term reporting to the coordinator/examiner.
- Do a mid-term report also at the work-place (can be a requirement in some work-places).
- Write the first draft of the final report and rewrite it based on feedback from the supervisor and possibly others.
- Plan for the final presentation of the report.

Finishing the project:

- Finish the report and obtain an OK from the supervisor.
- Ask the supervisor to send the certificate and feedback form to the coordinator.
- Attend the pre-final oral presentation arranged by the Coordinator.
- Rewrite the final report again based on feedback from the opponents and possibly others.
- Prepare a title page and a popular science summary for your report.
- Send the completed final report to the coordinator (via plagiarism software)
- Rewrite the report based on possible feedback from the coordinator.
- Appear for the final exam.

Project Proposal/research plan

- The student should spend the first 1-2 weeks writing a 1-2 pages project plan containing:
 - Short background of the project
 - Aims of the project
 - Short description of methods that will be used
 - Estimated time schedule for the project
- The research plan should be handed in to the supervisor and the coordinator.
- Writing the project plan will help you plan your project work and get you started in finding
- information and understanding of methods needed to perform the project.

Project Documentation The documentation should contain:

- Introduction that should contain a technical and social (when possible) motivation of the project topic.
- Description of the problems/topics.
- Status of the research/knowledge in the field and literature review.
- Description of the methodology/approach. (The actual structure of the chapters here depends on the topic of the documentation.)
- Results must always contain analyses of results and associated uncertainties.
- Conclusions and proposals for the future work.
- Appendices (when needed).
- Bibliography references and links.

For the master's documentation, the chapters cannot be dictated, they may vary according to the type of project. However, in Semester III Project Documentation and Viva Voce must contain at least 4 chapters

(Introduction, Review of Literature,

Methodology / Approach, Proposed Design / UI design, etc. depending on the type of project.) The Semester III report should be spiral bound.

In Semester IV, the remaining Chapters should be included (which should include Experiments performed, Results and discussion, Conclusions and proposals for future work, Appendices) and Bibliography - references and links. Semester IV report should include all the chapters and should be hardbound.