

ा। विद्या विनयेन शोभते।। Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A⁺' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: B.Sc. Degree Programme in Biotechnology

SYLLABUS

(Approved in the Academic council meeting held on 13/06/2024)

F.Y. B.Sc. Biotechnology

As per Revised National Education Policy Choice Based Credit & Grading System (60:40) w. e. f. Academic Year 2024-25

Preamble

Biotechnology is a multidisciplinary subject that deals with the application of biological components for human welfare. At Undergraduate level learners are offered various courses that would strengthen their fundamentals in Biotechnology and allied subjects such as Chemistry, Biochemistry, and Molecular Biology etc.

Learners after completing their biotechnology course can find suitable employment in the research and development, laboratories, pharmacies etc. The syllabus herein discusses the subjects offered at undergraduate level highlighting the respective course as well as program outcomes.

On completion of the course the learner will be skilled and equipped with contemporary knowledge in Biotechnology and would be eligible for jobs in varied industrial sectors. The students are offered skill enhancement course.

As per the guidelines under NEP Curriculum content is designed in each subject to its core essentials, to make space for critical thinking and more holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning.

F.Y. B.Sc. Biotechnology

Course Code	Course Type	Course Title	Credits
UBT1FBT	Course- 1	Fundamentals of Biotechnology	3+1
UBT1PR1	Practical Course-1	Practical of Fundamentals of Biotechnology	
UBT1CBI	Course-2	Cell Biology	3+1
UBT1PR2	Practical Course-2	Practical of Cell Biology	
UBT1BMI	Course-3	Basic Microbiology	3+1
UBT1PR3	Practical Course-3	Practical of Basic Microbiology	
USEC1IOB	Skill Enhancement Course	Instrumentation and Operating Skills in Biotechnology	02p
	Other courses	AEC+IKS+VEC+CC	08
			22

SEMESTER-I

F.Y. B.Sc. Biotechnology SEMESTER-II

Course Code	Course Type	Course Title	Credits
UBT2BCH	Course-4	Biological Chemistry	3+1
UBT2PR1	Practical Course-4	Practical of Biological Chemistry	
UBT2MBI	Course-5	Molecular Biology	3+1
UBT2PR2	Practical Course-5	Practical of Molecular Biology	
UBT2GEN	Course-6	Genetics	3+1
UBT2PR3	Practical Course-6	Practical of Genetics	
USEC2BMC	Skill Enhancement Course	Bio-business in Mushroom cultivation	02
UBT2PRM	Course- III	Practical- Genetics	
	Other courses	OE+AEC+VEC+CC	08
			22

Course-01: Fundamentals of Biotechnology		
Semester	Semester I	
Course Name	Fundamentals of Biotechnology	
Course Code	UBT1FBT	
Credit	03 Theory+01Practical	

Course Objectives	 The course aims to introduce the fundamentals of biotechnology. The learner will be able develop complete understanding of the broad spectrum of biotechnology, emphasizing its relevance, applications in diverse sectors, and ethical considerations. It explores the global demand, job prospects, and connections with other disciplines. 	
Course Outcomes	After completion of the course students will be able to:	
CO-1	Define Biotechnology, exploring its historical context, and applications in various sectors along with the scope and significance of biotechnology globally and in India.	
CO-2	Explain the applications of Biotechnology in various sectors like agriculture and environment.	
CO-3	Outline the applications of Biotechnology in various sectors industry and medicine.	

Units	Course Description	Hrs.
UNIT I Introduction to	• Definition, Traditional and Modern Biotechnology.	15h
Biotechnology	 Branches of Biotechnology- Plant Biotechnology, Animal Biotechnology, Pharmaceutical Biotechnology, Industrial Biotechnology, Marine Biotechnology, and Environmental Biotechnology. Biotechnology in India-Bio-business in India, booming biotech market, success story of biotech market, policy initiatives and global trends; potential of modern biotechnology, Ethics in Biotechnology. Concept of Genetic Engineering and Recombinant DNA Technology. 	

Unit II Applications of Biotechnology-I	 Agriculture: GM fruits- GM papaya, GM tomato, Insect resistant transgenic plants- Bt cotton, Bt brinjal, Modifications in nutrient quality -Golden rice, seed quality proteins. Organic farming: Green manuring and organic fertilizers, recycling of biodegradable municipal, agricultural and Industrial wastes - biocompost making methods, types and method of vermicomposting. Biofertilizers: Microbes used as biofertilizer - Rhizobium, Azospirillum, Cyanobacteria (blue 	15h
	green algae), Azolla and Anabaena, Mycorrhizal association.	
Unit III Applications of Biotechnology-II	 Animal Biotechnology: Transgenic animals-agriculture, medical and industrial applications. Industry: Microbial enzyme applications Forensic science: Solving violent crimes such as murder and physical assault, Significance of genetic marker typing data, solving claims of paternity and theft. Health: recombinant vaccines, gene therapy, diagnostics, Edible vaccines. Nutraceutical and functional foods: Role of nutraceuticals and functional foods in human 	15h

References:

- 1. Dubey, R. C. (1993). A textbook of Biotechnology. S. Chand Publishing.
- 2. Dubey, R. C. (2014). Advanced biotechnology. S. Chand Publishing.
- 3. Singh, B. D., & Singh, B. D. (2007). Biotechnology expanding horizons. Kalyani publishers.
- 4. Klaus Buchholz and John Collins. Concepts in Biotechnology-History, Science and Business-Wiley-VCH
- 5. Genetic Engineering: Principles and Practice. (n.d.). India: McGraw-Hill Education.
- 6. Principles of Gene Manipulation and Genomics Richard M Twyman and S. B. Primrose.

Practical Course-1

Practical of Fundamentals of Biotechnology

Cours	se Objectives	This course aims to give hands-on training in to gain laboratory skills
		and expertise in recent biotechnological advancements through
		experiments, case studies, demonstrations, and virtual visits, thus
		linking theory with practical insights.
Cours	se Outcomes	After completion of the course students will be able to:
CO1		Analyze and report on recent biotech applications to demonstrate
		understanding and application of theoretical knowledge.
CO2	Conduct virtual visits to research institutes, fostering skills in navigating and extracting valuable information from scientific resources.	
CO3		Gain hands-on experience on isolation and estimation techniques of
		DNA
		UBT1PR1 (30 Hrs.)
1.	Isolation of D	NA from Onion.
2.	Estimation of	DNA by DPA method.
3.	Agarose gel el	ectrophoresis of isolated DNA.
4.	A case study of	of GMOs.
5.	A case-study of	on any one recent application of Biotechnology.
6.	Preparation of compost.	
7.	Tenderization of meat using enzymes.	
8.	Field visit t biotechnology	to National/ International research institutes for research in 7.

Course-02: Cell Biology	
Semester I	
Course Name	Cell Biology
Course Code	UBT1CBI
Credit	03 Theory+01Practical

Course Objectives	The course aims to introduce the fundamentals of concepts of cell biology like cell structure, functions, cell cycle and its regulation.
Course Outcomes	After completion of the course students will be able to:
CO-1	Explain ultrastructure of prokaryotic and eukaryotic cells.
CO-2	Illustrate membrane structure and functions.
CO-3	Outline the cell cycle phases with its regulation.

Units	Course Description	Hrs.
		151
UNIT I Structure of Prokaryotic and Eukaryotic Cell	 Ultra-structure of Prokaryotic Cell: Cell theory, Concept of Cell Shape and Size, Detail Structure of Slime Layer, Capsule, Flagella, Pilli, Cell Wall (Gram Positive and Negative), Cell Membrane, Cytoplasm and Genetic Material Storage Bodies and Spores. 	15h
	• Ultra-structure of Eukaryotic Cell: Plasma membrane, Cytoplasmic Matrix, Microfilaments, Intermediate Filaments, and Microtubules.	
	 Organelles of the Biosynthetic-Endoplasmic Reticulum & Golgi apparatus. Lysosome, Eukaryotic Ribosomes, Mitochondria, and Chloroplasts. 	
	• Nucleus–Nuclear Structure, Nucleolus, Cilia and Flagella.	
	 Comparison of Prokaryotic and Eukaryotic Cells. 	

UNIT II Membrane Structure and Function	 Membrane Structure and Function- Chemical composition of membranes, Membrane lipids; Membrane proteins. Functions of membranes: Transport, Cell-cell interactions, Receptors. Membrane Model: Fluid Mosaic Model Membrane transport: Active Transport, Passive Transport, Diffusion and Osmosis, Membrane transport associated disease e.g. cystic fibrosis. Bulk transport: endocytosis and exocytosis Membrane junctions Classification of junctions: Occluding: Tight, Anchoring: Degrees of the composition of	15h
	Desmosomes, Channel- forming: Gap, Plasmodesmata.	
	Cell Coat and Cell Recognition.	
UNIT III Cell cycle and Regulation	• Cell Cycle and regulation in Prokaryotic and Eukaryotic cell-	
	• Phases of cell cycle (G0, G1, G2, M phases), checkpoints in cell cycle regulation.	
	 Mitosis and Meiosis and their significance; Control of mitosis by cyclins, MPF activity and cyclin-dependent kinases, 	
	 Programmed Cell Death-Introduction to Apoptosis, Apoptosis pathways and its regulation; Difference in Apoptosis and necrosis. 	

References:

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland Science.
- 2. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
- 3. Cooper, G. M., & Hausman, R. E. (2013). The Cell: a Molecular Approach (6th Ed.). Washington: ASM; Sunderland.
- 4. Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc.
- 5. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.

Practical Course- 2 Practical of Cell Biology

	i ruccicui or com Brotogy
Course Objectives Understand fundamental cellular processes through h	
	on exploration of mitosis and meiosis.
Course Outcomes	After completion of the course students will be able to:
CO-1	explain and demonstrate the steps of mitosis and meiosis
CO-2	demonstrate basic techniques of cell biology

	UBT1PR2 (30 Hrs.)
1.	Monochrome staining using plant /animal tissue.
2.	Special Staining Technique for Cell Wall
3.	Special Staining Technique for capsule.
4.	Isolation of cell organelles by density gradient centrifugation.
5.	Effect of different concentrations of sodium chloride on RBC and determination of the concentration isotonic to blood.
6.	Study of mitosis from suitable plant material
7.	Study of meiosis from suitable plant material/Permanent slides/Photographs
8.	Study of mitosis using pre-treated root tips of <i>Allium cepa</i> to study the effect of mutagens- chemical(colchicine/ PDB) on mitosis

Course-3 Basic Microbiology	
Semester	Ι
Course Name	Basic Microbiology
Course Code	UBT1BMI
Credit	03 Theory+01Practical

Course Objectives Course Outcomes	 Develop a comprehensive understanding of microbial science by exploring the history, classification, and cultivation techniques, emphasizing the role of microorganisms in everyday life. Acquire proficiency in microscopy principles, and applications. After completion of the course students will be able to:
CO-1	State the microbial world's historical context, classification, and cultivation techniques.
CO-2	Make use of sterilization and disinfection techniques.
CO-3	Apply microscopy principles effectively, showcasing proficiency in optics, staining techniques, and practical applications.

Units	Course Description	Hrs.
UNIT I	Discovery of Microorganisms, Conflict over	15h
Introduction	spontaneous generation.	
to	• Classification: The place of Microorganisms in	
Microbiology	the living world, Classification: Whittaker's five	
	kingdom classification, Introduction to Bergey's	
	Manual, Groups of Microorganisms, Applications	
	of microbiology in various fields	
	• Nutrition, Cultivation and Maintenance of	
	microorganisms: Nutritional categories of	
	microorganisms,	
	• Design and Types of Culture Media, methods of	
	isolation. (Pure Culture Techniques- Streak	
	plate, Pour, Spread plate, Tube dilution.	

UNIT II	• Introduction: Definition and concept of	15h
Sterilization	Sterilization and Disinfection	
Techniques	 Types and Applications: Dry Heat, Steam under pressure Gases, Radiation and Filtration. Chemical Agents and their Mode of Action: Aldehydes, Halogens, Quaternary Ammonium Compounds, Phenol and Phenolic Compounds, Heavy Metals, Alcohol, Dyes, and Detergents. Disinfectant: Ideal Disinfectant. Examples of Disinfectants and Evaluation of Disinfectant 	
UNIT III	Simple and Compound Microscope: General	15h
Microscopy	principles of optics; various parts and their	
and stains	functions - objectives – numerical aperture, resolving power, depth of focus, working	
	distance, aberrations; oculars; condensers.	
	• Principle, working and applications of Bright	
	Field Microscope, Dark Field Microscope; Phase	
	Contrast Microscope, Fluorescent Microscope.	
	Stains and Staining Solutions- Definition of Dye	
	and Chromogen; acidic and basic dyes; functions	
	of chromophore and auxochrome groups.	
	Definition and function of stain; mordant,	
	intensifiers and Fixative. Simple, negative,	
	differential staining and special staining.	

References:

- 1. Prescott, L. M. (2002). Microbiology 5th Edition.
- 2. Prescott, L. M. (2015). Microbiology 10th Edition.
- 3. Pelczar, Microbiology. (1993). India: McGraw-Hill Education.
- 4. Ananthanarayan, R., Paniker, C. J. (2006).
- 5. Ananthanarayan and Paniker's Textbook of Microbiology. India: Orient Longman.
- 6. Salle, A. J., &, A. J. Salle (1954). Fundamental principles of bacteriology McGraw-Hill.
- 7. Frobisher M. Fundamentals of Microbiology (9th Ed)
- 8. J Sambrook & EF Fritsch, Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory press, U.S.A.
- 9. S.B Primrose, R M Twyman, Principles of Gene Manipulation and Genomics, Blackwell Science (Asia Pvt Ltd).

Practical Course-3

Practical of Basics of Microbiology

Course Objectives	To demonstrate methods for isolating and quantifying microorganisms from various sources, emphasizing on aseptic techniques and proper handling.
Course Outcomes	After completion of the course students will be able to:
CO-1	Hands-on experience in isolation techniques, microbial enumeration.
CO-2	Isolate and quantify microorganisms from various sources using aseptic techniques.
CO-3	Maintain accurate laboratory records, including observations, procedures, and results.

	UBT1PR3 (30 Hrs.)
1.	Microscopy– Description and operation of compound Microscope, use of oil immersion objective. (Including Handling and storage)
2.	Preparation of Media- Nutrient broth and Agar, MacConkey Agar, Sabourauds, Agar.
3.	Aseptic transfer technique (tube to tube, tube to plate, pipette to tube).
4.	Isolation of Organisms: T-streak, Polygon method.
5.	Enumeration of microorganisms by Serial Dilution, Pour Plate, Spread PlateMethod.
6.	Monochrome staining using any suitable material.
7.	Negative staining
8.	Differential staining –Gram staining

Skill Enhancement Course -

Instrumentation and Operating Skills in Biotechnology

Semester	Ι
Course Name	Instrumentation and Operating Skills in Biotechnology
Course Code	USEC1IOB
Credit	02

Course Objectives	The course is an elementary course in instrumentation and Operating Skills used in Biotechnology that forms the foundation of analytical techniques. The knowledge and handling of instruments is necessary in academics, research work and industry.
Course Outcomes	After completion of the course students will be able to:
CO-1	Apply the use and operations of basic laboratory instruments in Biotechnology
CO-2	Explain principle, instrumentation and applications of basic techniques used in biotechnology.

1.	Study of laboratory symbols, Safety Measures and Good laboratory Practices (GLP) in Chemistry Laboratory.
2.	Preparation of Solutions: Normal, Molar and percentage solution (%W/W, %V/V, %W/V), ppb and ppm.
3.	Validation of glass pipettes and Measuring cylinders.
4.	Buffer solutions - Concept of Buffers, Types of Buffers, Derivation of
	Henderson equation for Acidic and Basic buffers, Buffer action, Buffer
	capacity.
5.	Preparation of pH Buffer standards and Calibration of pH meter.
6.	a. To study Beer Lambert's law and Determination of lambda max of colored solutions.
	b. Verification of Beer Lambert's law.
7.	Validation and handling of Autoclave.
8.	Separation of amino acids by Paper chromatography.
9.	Separation of plant pigments by TLC.
10.	Principle, Working and applications of Centrifuges and its types.
11.	Data Handling in Biological sciences. Plotting Graphs, Types of graphs and data interpretation.
12.	Determination of Acetic acid in Vinegar by Titrimetric Method.
13.	Determination of percent composition of BaSO ₄ and NH ₄ Cl in the given mixture gravimetrically.

References:

- 1. Biochemical Methods by Sadasivam, S, Manickam, A. Publisher: New Age International
- 2. An introduction to practical biochemistry By Plummer, David T
- Lab Ref, Volume 1 A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench, Edited by Jane Roskams, University of British Columbia, Canada; Linda Rodgers, Cold Spring Harbor Laboratory
- Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench, Second edition 2nd Edition, Cold Spring Harbor Laboratory Press

SEMESTER-II

R. SAAGT HA

DEPARTMENT OF BIOTECHNOLOGY

Course-4 Biological Chemistry	
Semester II	
Course Name	Biological Chemistry
Course Code	UBT2BCH
Credit	03 Theory+01Practical

Course Objectives	This course aims to introduce the fundamentals of Biochemistry. The students will learn about the biomolecules with their physiological significance.
Course Outcomes	After completion of the course students will be able to:
CO-1	Classify different types of bonds and organic Reaction mechanisms.
CO-2	Explain the biomolecules like carbohydrates and lipids with their physiological significance.
CO-3	Discuss the amino acids and proteins with their structure and functions.

Units	Course Description	Hrs.
UNIT I Chemical bonds and Chemistry of Water	 Chemical Bonds: Bonds stabilizing biomolecules-ionic Bond, Covalent bonds, hydrogen bonding, hydrophobic interaction, disulphide bonds. Dipole- dipole interactions, London forces. Chemistry of Water: Structure and Properties of 	15h
	 Water. Organic Reaction Mechanisms A. Chemical Logic B. Group-Transfer Reactions C. Oxidations and Reductions D. Eliminations, Isomerizations, and Rearrangements E. Reactions That Make and Break Carbon–Carbon Bonds. 	
	• Bioenergetics- Laws of thermodynamics, concept of free energy, enthalpy and entropy. Thermodynamics of Phosphate Compounds A. Phosphoryl-Transfer Reactions B. Rationalizing the "Energy" in "High-Energy" Compounds C. The Role of ATP.	

UNIT II :		15h
Carbohydrates and Lipids	 Carbohydrates: Classification and functions of Carbohydrates Structure, Function, properties and reactions of Monosaccharaides. Structures and functions of biologically important Disaccharides. Polysaccharides-Homo and Hetero Polysaccharides, Mucopolysaccharides, Bacterial cell wall polysaccharides Lipids: Classification, functions of Lipids, nomenclature and properties of fatty acids, essential fatty acids. Lipids of Biological Significance-Phospholipids, sphingolipids, glycol-lipids, cerebrosides, gangliosides, Prostaglandins and Cholesterol. 	
Unit III:	Amino acids and Protein:	15h
Amino Acids and Proteins	 Classification, Structure and properties of Amino acids, Isoelectric Point, Peptide Synthesis. Reactions of Amino Acids, Sorenson's Titration, Ninhydrin Test. Titration Curve of Amino Acids. Concept of Isoelectric pH, Zwitter ion. Tupos, of protoins, their classification based on 	
	 Types of proteins, their classification based on Structure and Functions. Primary Structure, Secondary, tertiary and quaternary structure of proteins with suitable examples. 	
	 Denaturation and renaturation of proteins. 	

Reference Books:

- 1. Outline of Biochemistry, Fifth edition, Eric e.Conn, Paul K. Stumpf, George Bruening, Roy H. Doi, Wiley-INDIA, John Wiley and Sons Inc. (P), Ltd .
- 2. Concise Inorganic Chemistry. 5th edition (2008), Author: J. D. Lee, John Wiley & Sons, USA.
- 3. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry.
- 4. Guide book to Mechanism in Organic Chemistry by Peter Sykes, 6 th edition, (1996), Prentice Hall, India.
- 5. Vogel, A. I., & Jeffery, G. H. (1989). Vogel's textbook of quantitative chemical analysis. Wiley.

PRACTICAL OF COURSE-4 Biological Chemistry		
Course Objectives	To adopt the practical skills in biochemistry and	
	biochemical tehniques.	
Course Outcomes	After completion of the course students will be able to:	
CO-1	Analyses the different biomolecules qualitatively and quantitatively.	
CO-2	Develop the practical skills in biochemistry.	

	UBT2PR1 (30 Hrs.)
1.	Qualitative Analysis of carbohydrates.
2.	Qualitative Analysis of amino acids, Proteins and lipids.
3.	Estimation of reducing sugars by DNSA method.
4.	Protein estimation by Biuret method.
5.	Separation of lipids by TLC.
6.	Estimation of Amino acids by Formal Titration.
7.	Isolation of Casein from Milk and Study of isoelectric pH.

Course-5 Molecular Biology		
Semester	II	
Course Name	Molecular Biology	
Course Code	UBT2MBI	
Credit	03 Theory+01Practical	

Course Objectives	This course aims to develop insights in the field of molecular
	biology
Course Outcomes	After completion of the course students will be able to:
CO-1	Explain structure and functions of nucleic acids.
CO-2	Compare the replication in prokaryotes and eukaryotes.
CO-3	Illustrate different types of mutations and DNA repair mechanisms.

Units	Course Description	Hrs.
UNIT I Structure of Nucleic acids	 Structure of nucleoside, nucleotides and Polynucleotides, Structure of DNA, DNA double helix, Watson and Crick's model. Clover leaf model of RNA, Types of RNA Structure Chargaff's rule DNA denaturation, Cot Curve 	
UNIT II DNA Replication	 DNA Replication in Prokaryotes- Evidence of Semi-conservative DNA replication- Messelhson and stahl's experiment. DNA Polymerases and its role E. coli Chromosome Replication, semi discontinuous replication, pulse chase experiment by R Okazaki Bidirectional Replication of Circular DNA molecules, Rolling Circle Replication, theta model of replication DNA Replication in Eukaryotes- detail steps and role of telomerases Enzymes and proteins involved in DNA replication 	15h

Unit III Mutation and DNA Repair	•	Mutation- Definition and Types of Mutations. Mutagenesis and Mutagens. (Examples of Physical, Chemical and Biological Mutagens)	15h
	•	DNA Repair: Photoreversal, Base excision Repair, Nucleotide Excision Repair, Mismatch Repair, SOS Repair and Recombination Repair.	

References:

- 1. Russell, P. J., & Gordey, K. (2002). IGenetics, San Francisco: Benjamin Cummings.
- 2. Simmons, M. J., & Snustad, D. P. (2006). Principles of genetics. John Wiley & Sons.
- 3. Russell, P. J. (2000). Fundamentals of genetics. Longman Publishing Group. Nicholl, D. S. T. (2002).
- 4. An Introduction to Genetic Engineering (Studies in Biology). India: Cambridge University Press.
- 5. Brown, T. A. (2013). Gene Cloning and DNA Analysis: An Introduction. Germany: Wiley.
- 6. Genetic Engineering: Principles and Practice. (n.d.). India: McGraw-Hill Education.
- 7. A Textbook of Biotechnology by R C Dubey 4th Ed.
- 8. Biotechnology: Fundamentals and Applications by S. S. Purohit.

Practical of Course-V Molecular Biology

Course Objectives	To build hands-on experience in molecular biology		
	techniques		
Course Outcomes	After completion of the course students will be able to:		
CO-1	Demonstrate basic techniques of molecular biology.		
CO-2	Develop practical skills in DNA extraction, qualitative/quantitative analysis.		

	UBT2PR2 (30 Hrs.)
1.	Estimation of DNA by UV-spectrophometric method.
2.	Estimation of RNA by Orcinol method.
3.	To study the effect of physical mutagen on bacteria.
4.	To study the effect of chemical mutagen on bacteria.
5.	Extraction and isolation of Genomic DNA from <i>E. coli</i> .
6.	Separation and visualization of DNA by Agarose gel electrophoresis (Demo)
7.	Assignment on to make model on DNA helix /Replication/DNA damage.

Course-6 Genetics		
Semester	II	
Course Name	Genetics	
Course Code	UBT2GEN	
Credit	03 Theory+01Practical	

Course Objectives	To acquaint students with basic concepts of genetics,	
	cytogenetics and gene transfer mechanism in bacteria	
Course Outcomes	After completion of the course students will be able to:	
CO-1	Illustrate principles of Mendelian genetics and gene interaction	
CO-2	Explain structure, organization of chromosome and mechanism of sex determination	
CO-3	Discuss mechanism of genetic exchange in bacteria.	

UNIT II	
	Structure and organization of eukaryotic
Cytogenetics	 Genetic material – Histone and nonhistone
	Proteins, nucleosome structure.
	Heterochromatin, Euchromatin,
	Polytene Chromosomes, Lampbrush
	chromosome.
	Chromosomal banding techniques
	0
	Karyotype and Idiogram Variation in
	Chromosomal Structure and Number:
	Deletion, Duplication, Inversion,
	Translocation, Aneuploidy, Euploidy and
	Polyploidy and Syndromes- Klinefelter,
	Turner, Cri-du-Chat, Trisomy-21, Trisomy-
	18and Trisomy-13.
	Sex Determination and Sex Linkage:
	Mechanisms of Sex Determination (XX-XY,
	ZZ- ZW, XX-XO)
	 Dosage Compensation and Barr body.
UNIT III	
Microbial	
	Auxotrophs.
Genetics	 Bacteriophages:Lytic and Lysogenic
	development of Phage.
	Mechanism of Genetic Exchange in Bacteria:
	Conjugation; Transformation;
	Transduction (Generalized Transduction,
	Specialized Transduction);
	Bacterial Transposable Elements.

References

- 1. Russell, P. J., & Gordey, K. (2002). IGenetics, San Francisco: Benjamin Cummings.
- Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, 13 Evolution and Ecology: Evolution and Ecology. S. Chand Publishing.
- 3. Simmons, M. J., & Snustad, D. P. (2006). Principles of genetics. John Wiley & Sons.
- 4. Russell, P. J. (2000). Fundamentals of genetics. Longman Publishing Group.
- 5. Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 6. Strickberger M., Genetics. (1995). Australia: Deakin University.

Course-6 Practical

Genetics

Course Objectives	The course is designed to give a base and technical		
	knowledge of genetics.		
Course Outcomes	After completion of the course students will be able to:		
CO-1	Solve problems based on genetic concepts and their practical applications		
CO-2	Hands on experience on basic techniques in genetics.		

	UBT2PR3 (30 Hrs.)
1.	Problems based on Mendelian Genetics, its modifications and gene interactions.
2.	Study of polytene chromosome
3.	Study of Normal Karyotype
4.	Study of Abnormal Karyotypes: Klinefelter, Turner, Cri-du-Chat, Trisomy-21, Trisomy-18and Trisomy-13.
5.	Barr body identification in cells of Buccal smear
6.	Preparation of competent cells and demonstration of Bacterial transformation and mapping
7.	Demonstration of Bacterial Conjugation and interrupted mating-based mapping
8.	Conduct a survey on observable genetic traits and compare those inventories with other students in groups. (Blood group, tongue rolling, earlobe attachment, PTC tasting etc.)
9.	Study of blood groups ABO in humans

TH for march

Skill Enhancement Course - Bio-business in Mushroom cultivation		
Semester	II	
Course Name	Bio-business in Mushroom Cultivation	
Course Code	USEC1BMC	
Credit	02	

Course Objectives	Course is designed to develop entrepreneur skills of		
	mushroom cultivation.		
Course Outcomes	After completion of the course students will be able to:		
CO-1	Apply the methods of making value added mushroom products.		
CO-2	Analyse nutritive values of mushroom products and its cost.		
CO-3	Design a business plan of Mushroom Cultivation.		

1.	To study different parts of a typical mushroom & variations in Mushroom morphology and different types of Mushrooms.
2.	Sterilization of glassware, equipment, and culture media used in mushroom cultivation
3.	Preparation of culture media: Potato Dextrose medium and Richards's medium.
4.	Preparation of spawn
5.	Preparation of compost and known compost formulations
6.	Mushroom bed preparation
7.	Preparation of Mother spawn
8.	Cultivation of Oyster mushroom
9.	Nutrient profiling and Medicinal value of mushrooms.
10.	Preparation of compost and known compost formulations
11.	Preservation of mushrooms - freezing, dry freezing, drying, canning
12.	Preparation of different recipes in mushroom cuisine
13.	Packaging and labeling and cost benefit analysis in mushroom cultivation.
14.	Designing the Business plan in Mushroom cultivation
15.	Records and documentations by the commercial unit for audit

References:

- Anupam Mishra, SRK Singh and MP Thakur: Training Manual on Cultivation of Tropical Mushroom and its Value addition. Agricultural Technology ApplicationResearch Institute - ICAR - Zone VII, JNKVV, Jabalpur
- Nailoke Pauline Kadhila, Favian SInvula Mubiana, and Keumbo Lorna Halueendo, 2012: Mushroom Cultivation - A Beginners Guide; Published by University of Namibia
- Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 4. Pandey R.K, S. K Ghosh, 1996. A Handbook on Mushroom Cultivation. Emkey Publications.
- 5. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 6. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.
- 7. Tripathi, D.P. (2005) Mushroom Cultivation, Oxford & IBH Publishing Co. PVT.LTD, New Delhi.
- 8. V.N. Pathak, Nagendra Yadav and Maneesha Gaur, Mushroom Production and Processing Technology/ Vedams Ebooks Pvt Ltd., New Delhi (2000).
- 9. National Institute of Open Schooling: https://nios.ac.in/media/documents/vocational/mushroom_production_(revised) (618)/Practical_Manual.pdf

.....

Scheme of Examination (Amended) Faculty of Science (Under-graduate Programmes)

Choice Based Credit System (CBCS)

- Revised Scheme of Examination
- 1. For 4 or 3 Credits Courses (Discipline Specific Courses (DSC)/Major/Minor Courses) (100 Marks)

The performance of the learners shall be evaluated into two components, as the first component by 'Continuous Internal Assessment (CIA)' with 40% marks and as the second component by conducting the 'Semester End Examinations (SEE)' with 60% marks. The allocation of marks for the Continuous Internal Assessment (CIA) and Semester End Examinations are as shown below:

A) Continuous Internal Assessment (CIA): 40 %

40 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	Test on Practical Skills/ Case studies /Group/ Individual Survey Project/Presentation and write up on the selected topics of the subjects/ Book Review / Open Book Test	15 Marks
03	Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibition of leadership qualities in organizing related academic activities	05 Marks

Question Paper Pattern (Periodical Class Test)

Maximum Marks: 20 Questions to be set: 02 **Duration: 40 Minutes**

All Questions are Compulsory

Question	Particular	Marks
No.		
Q-1	Match the Column / Fill in the Blanks / Multiple Choice	10 Marks
	Questions/True or False/ Answer in One or Two Lines (Concept	
	based Questions) (1 Marks / 2 Marks each)	
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

B) Semester End Examination (SEE): 60 %

60 Marks

• Duration: The examination shall be of 2 hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be three/four questions each of 20/15 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.
- Practical Examination (PE) for Discipline Specific Courses (DSC) / Minor Courses 50 Marks

The Practical Examination (PE) shall be of 50 marks for Discipline Specific Courses (DSC)/Minor Courses.

• Practical Examination (PE) for Major Courses (Semester III & Semester IV) 100 Marks

The Practical Examination (PE) shall be of 100 marks for Major Courses of Semester III & Semester IV.

2. For 2 Credits Courses (VEC/AEC/IKS/CC Courses) (50 Marks)

The performance of the learners shall be evaluated into two components, as the first component by 'Continuous Internal Assessment (CIA)' with 40% marks and as the second component by conducting the 'Semester End Examinations (SEE)' with 60% marks. The allocation of marks for the Continuous Internal Assessment (CIA) and Semester End Examinations (SEE) are as shown below:

A) Continuous Internal Assessment (CIA): 40 %

20 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in	20 Marks
	the given semester	

Question Paper Pattern (Periodical Class Test)

Duration: 40 Minutes

Maximum Marks: 20 Questions to be set: 02

All Questions are Compulsory

Question No.	Particular	Marks
Q-1	Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each)	10 Marks
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

B) Semester End Examination (SEE): 60 %

30 Marks

(50 Marks)

• Duration: The examination shall be of 1 hour's duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be two/three questions each of 15/10 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

3. For 2 Credits Courses (Skill Enhancement Courses (SEC)) Practical Examination (PE) (50 Marks)

The Practical Examination (PE) shall be of 50 marks for Skill Enhancement Courses (SEC)

Journal/ Viva Voce	10 Marks
Practical Examination (PE)	40 Marks

4. For 2 Credits Courses (Open Elective (OE) Courses)

The performance of the learners shall be evaluated into two components. The allocation of marks are as shown below:

A) Case Studies/Projects/Field Work (FW)/Test Based on Tutorials/Open Book Test: 40 % 20 Marks

	Workbook / Lab book / Wine Voce /Write up	05	
	Workbook/Lab book/ Viva Voce/Write up		
	Case Studies/Projects/ Field work /Laboratory Work /Test based or	n 15	
	tutorials/Open Book Test	Marks	
B	B) Semester End Examination (SEE): 60 % 30 Ma		

• Duration: The examination shall be of 1 hour duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be two/three questions each of 15/10 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

5. For 2 Credits Field Project (FP)/Community Engagement Project (CEP) / Research Project (RP) (50 Marks)

• The performance of the learners shall be evaluated 50 Marks.

Passing Standard

- I. For 4 or 3 Credits Courses (Discipline Specific Courses (DSC)/Major/Minor Courses): The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Continuous Internal Assessment (CIA) and 40% marks in Semester End Examination (SEE) (i.e. 24 out of 60) separately, to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester. A learner will be said to have passed the course if the learner passes the Continuous Internal Assessment (CIA) and Semester End Examination (SEE).
- For 2 Credits Courses AEC, VEC, VSC, SEC, IKS, OE, FP, CEP, RP and CC courses: Learners should remain present for Continuous Internal Assessment (CIA) and Semester End Examination (SEE)/ Practical Examination (PE). A learner will be said to have passed the course if the learner obtains minimum of 40% marks in the Continuous Internal Assessment (CIA) and Semester End Examination (SEE)/ Practical Examination together and obtain minimum 10 marks out of 30 marks in Semester End Examination (SEE)/ Practical Examination (PE).
- For Practical Examinations (PE): The learners shall obtain minimum of 40% marks (i.e. 20 out of 50) in Practical Examination (PE), to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester.

Note: As per previous ordinance there will not be any internal examination for practical.

- Rules of A.T.K.T. for Revised NEP 2020 structure of Academic Year 2024-25
 - 1. A learner shall be allowed to keep term for Semester II irrespective of the number of courses of failure in the Semester I.
 - 2. A learner shall be allowed to take admission to Semester III if he/she passes both Semester I and Semester II.

OR

A learner shall be allowed to keep term for Semester III, if he/she fails in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester I and Semester II taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester I and Semester II.

3. A learner shall be allowed to keep term for Semester IV irrespective of the number of courses of failure in the Semester III.

4. A learner shall be allowed to take Admission to Semester-V and Keep Terms if he/she Passes in both Semester-I and Semester-II and failed in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester – III and Semester – IV taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester – III and Semester – IV

OR

Passes in both Semester-III and Semester-IV and failed in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester – I and Semester – II taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester – I and Semester – II.

- 5. A learner shall be allowed to keep term for Semester VI irrespective of the number of courses of failure in the Semester V.
- The result of Semester-VI shall be withheld by the College till the learner passes all the Semesters from I – V.
- 7. A Learner is allowed to take admission in semester VII (UG Hon. /PG Part I) only if he passed all courses of semesters I to VI (132 Credits).

Eligibility Condition to appear for Additional Examination of any Semester (Applicable only for Regular Semester End Examinations)

A learner who remains absent in some or all the subjects on medical grounds or for representing the College or University in NSS, NCC, Sports, Cultural Activities or cocurricular/extracurricular/extension activities with prior permission of the Principal or Head of the institute reported to the examination section, by producing necessary documents and testimonials, will be allowed to appear for the Additional Semester End Examination (ASEE). This is not applicable for any A.T.K.T. / Supplementary Examinations.

> Supplementary Examination (SE)

The college will conduct supplementary examinations for semester II, IV, and VI after the declaration of their respective results.

Note:

1) It is noted that the concerned regulation of the College is amended and implemented to Semester I to Semester IV of undergraduate programmes, under faculty of Arts, Commerce and Science with effect from the academic year 2024 - 2025. All these rules may be amended as and when required with authorisation of Academic bodies.

II विद्या विनयेन शोभते II Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A⁺' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: B.Sc. Degree Programme in Biotechnology

SYLLABUS

(Approved in the Academic council meeting held on 13/06/2024

S.Y. B.Sc. Biotechnology

As per National Education Policy Choice Based Credit & Grading System (60:40) w. e. f. Academic Year 2024-25

Course Code	Course Type	Course Title	Credits
UBT3BIC	Major Course-5	Biochemistry	4 (3+1)
UBT3MBG	Major Course-6	Membrane Biology and Genetics	4 (3+1)
UBT3PR1	Practical Major Course-5 and 6	Practical- Biochemistry (UBT 3BIC) and Membrane Biology and Genetics UBT3MBG	
UBT3MEM	Minor Course-2	Medical Microbiology	4 (2+2)
UBT3PR2	Minor Course Practical	Practical-Medical Microbiology UBT3MEM	
UVSC3FBT	Vocational Skill Course-3	Food Biotechnology	02
UOE3IBD	Open Elective-3	Introduction to Biotechnology for domestic Waste Management	02
		OE+CC+VAC+AEC+ ((Other Departments)	08
			22

B.Sc. Biotechnology

Semester-IV S.Y. B.Sc. Biotechnology

Course code	Course Type	Course Title	Credits
UBT4MET	Major Course-7	Metabolism	4 (3+1)
UBT4 MOB	Major Course-8	Molecular Biology- II	4 (3+1)
UBT4 PR1	Practical Major Course-7 and 8	Practical - Metabolism (UBT4MET) and Molecular Biology- II (UBT4 MOB)	
UBT4BPT	Minor Course-3	Bioprocess Technology	4 (2+2)
UBT4 PR2	Minor Course-3 Practical	Practical -Bioprocess Technology (UBT4BPT)	
USEC4BTE	Skill Enhancement Course-3	Practical- Bioanalytical Techniques	02
UOE4 SFA	Open Elective-4	Soilless Farming	02
		CC+VAC+AEC (offered by the other Departments)	06
			22

Scheme of Examination (Amended) Faculty of Science (Under-graduate Programmes)

Choice Based Credit System (CBCS)

Revised Scheme of Examination

1. For 4 or 3 Credits Courses (Discipline Specific Courses DSC/Major/Minor Courses) (100 Marks)

The performance of the learners shall be evaluated into two components, as the first component by 'Continuous Internal Assessment (CIA)' with 40% marks and as the second component by conducting the 'Semester End Examinations (SEE)' with 60% marks. The allocation of marks for the Continuous Internal Assessment (CIA) and Semester End Examinations are as shown below:

A) Continuous Internal Assessment (CIA): 40 %

Sr. No. **Particular** Marks One periodical class test / online examination to be conducted in the 01 20 Marks given semester Test on Practical Skills/ Case studies /Group/ Individual Survey 02 Project/Presentation and write up on the selected topics of the 15 Marks subjects/ Book Review / Open Book Test Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation 03 05 Marks and exhibition of leadership qualities in organizing related academic activities

Question Paper Pattern (Periodical Class Test)

Maximum Marks: 20 Questions to be set: 02 All Ouestions are Compulsory Duration: 40 Minutes

40 Marks

Question	Particular	
No.		
Q-1	Match the Column / Fill in the Blanks / Multiple Choice	10 Marks
	Questions/True or False/ Answer in One or Two Lines (Concept based	
	Questions) (1 Marks / 2 Marks each)	
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

B) Semester End Examination (SEE): 60 %

60 Marks

20 Marks

Duration: 40 Minutes

• Duration: The examination shall be of 2 hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be three/four questions each of 20/15 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.
- Practical Examination (PE) for Discipline Specific Courses (DSC) / Minor Courses 50
 Marks

The Practical Examination (PE) shall be of 50 marks for Discipline Specific Courses (DSC)/Minor Courses.

• Practical Examination (PE) for Major Courses (Semester III & Semester IV) 100 Marks

The Practical Examination (PE) shall be of 100 marks for Major Courses of Semester III & Semester IV.

2. For 2 Credits Courses (VEC/AEC/IKS/CC Courses) (50 Marks)

The performance of the learners shall be evaluated into two components, as the first component by 'Continuous Internal Assessment (CIA)' with 40% marks and as the second component by conducting the 'Semester End Examinations (SEE)' with 60% marks. The allocation of marks for the Continuous Internal Assessment (CIA) and Semester End Examinations (SEE) are as shown below:

A) Continuous Internal Assessment (CIA): 40 %

Sr. No.	Particular	Marks	
01	One periodical class test / online examination to be conducted in the		
01	given semester	20 Marks	

Question Paper Pattern (Periodical Class Test)

Maximum Marks: 20

Questions to be set: 02

All Questions are Compulsory

Question No.	Particular	Marks
Q-1	Match the Column / Fill in the Blanks / Multiple Choice	
	Questions/ Answer in One or Two Lines (Concept based	
	Questions) (1 Marks / 2 Marks each)	
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

B) Semester End Examination (SEE): 60 %

30 Marks

• Duration: The examination shall be of 1 hour's duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be two/three questions each of 15/10 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

3. For 2 Credits Courses (Skill Enhancement Courses (SEC)) Practical Examination (PE) (50 Marks)

The Practical Examination (PE) shall be of 50 marks for Skill Enhancement Courses (SEC)

Journal/ Viva Voce	10 Marks
Practical Examination (PE)	40 Marks

4. For 2 Credits Courses (Open Elective (OE) Courses) (50 Marks)

The performance of the learners shall be evaluated into two components. The allocation of marks are as shown below:

A) Case Studies/Projects/Field Work (FW)/Test Based on Tutorials/Open Book Test: 40 %

Marks

Workbook/Lab book/ Viva Voce/Write up	05 Marks	
Case Studies/Projects/ Field work /Laboratory Work /Test based on	15 Marks	
tutorials/Open Book Test	10 Murks	

B) Semester End Examination (SEE): 60 %

30 Marks

• Duration: The examination shall be of 1 hour duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be two/three questions each of 15/10 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

- 5. For 2 Credits Field Project (FP)/Community Engagement Project (CEP) / Research Project (RP) (50 Marks)
- The performance of the learners shall be evaluated 50 Marks.

Passing Standard

- I. For 4 or 3 Credits Courses (Discipline Specific Courses (DSC)/Major/Minor Courses): The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Continuous Internal Assessment (CIA) and 40% marks in Semester End Examination (SEE) (i.e. 24 out of 60) separately, to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester. A learner will be said to have passed the course if the learner passes the Continuous Internal Assessment (CIA) and Semester End Examination (SEE).
- For 2 Credits Courses AEC, VEC, VSC, SEC, IKS, OE, FP, CEP, RP and CC courses: Learners should remain present for Continuous Internal Assessment (CIA) and Semester End Examination (SEE)/ Practical Examination (PE). A learner will be said to have passed the course if the learner obtains minimum of 40% marks in the Continuous Internal Assessment (CIA) and Semester End Examination (SEE)/ Practical Examination together and obtain minimum 10 marks out of 30 marks in Semester End Examination (SEE)/ Practical Examination (PE).
- For Practical Examinations (PE): The learners shall obtain minimum of 40% marks (i.e. 20 out of 50) in Practical Examination (PE), to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester.

Note: As per previous ordinance there will not be any internal examination for practical.

- Rules of A.T.K.T. for Revised NEP 2020 structure of Academic Year 2024-25
 - 1. A learner shall be allowed to keep term for Semester II irrespective of the number of courses of failure in the Semester I.
 - 2. A learner shall be allowed to take admission to Semester III if he/she passes both Semester I and Semester II.
 - OR

A learner shall be allowed to keep term for Semester III, if he/she fails in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester I and Semester II taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester I and Semester II.

- 3. A learner shall be allowed to keep term for Semester IV irrespective of the number of courses of failure in the Semester III.
- 4. A learner shall be allowed to take Admission to Semester-V and Keep Terms if he/she Passes in both Semester-I and Semester-II and failed in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester – III and Semester – IV taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester – III and Semester – IV OR

Passes in both Semester-III and Semester-IV and failed in not more than four Discipline Specific Courses (DSC) and not more than six other courses of Semester – I and Semester – II taken together with not more than two Discipline Specific Courses (DSC) and not more than three other courses each in Semester – I and Semester – II.

- 5. A learner shall be allowed to keep term for Semester VI irrespective of the number of courses of failure in the Semester V.
- 6. The result of Semester-VI shall be withheld by the College till the learner passes all the Semesters from I V.
- 7. A Learner is allowed to take admission in semester VII (UG Hon. /PG Part I) only if he passed all courses of semesters I to VI (132 Credits).

Eligibility Condition to appear for Additional Examination of any Semester (Applicable only for Regular Semester End Examinations)

A learner who remains absent in some or all the subjects on medical grounds or for representing the College or University in NSS, NCC, Sports, Cultural Activities or cocurricular/extracurricular/extension activities with prior permission of the Principal or Head of the institute reported to the examination section, by producing necessary documents and testimonials, will be allowed to appear for the Additional Semester End Examination (ASEE). This is not applicable for any A.T.K.T. / Supplementary Examinations.

> Supplementary Examination (SE)

The college will conduct supplementary examinations for semester II, IV, and VI after the declaration of their respective results.

Note:

1) It is noted that the concerned regulation of the College is amended and implemented to Semester I to Semester IV of undergraduate programmes, under faculty of Arts, Commerce and Science with effect from the academic year 2024 - 2025.

2) All these rules maybe amended as and when required with authorisation of Academic bodies.

SEMESTER-III

SEMESTER-III

Major Course-5 Biochemistry		
Semester	III	
Course Name	Major-5 Biochemistry	
Course Code	UBT3BIC	
Credit	03 Theory+01Practical	
Hours/Week	03 Theory+02 Practical	

Course Objectives-

- To develop fundamentals of Biomolecules and their Biological significance.
- To comprehend the classification, working, Kinetics and functions of the enzymes.

Course Outcomes: After completion of this course students will be able to:

- Explain the Structure, classification, properties and functions of Carbohydrates and lipids.
- Describe the proteins, their structural organization and functions.
- Classify enzymes with Enzyme inhibition.

Units	Course Description	Hrs.
UNIT I :	Carbohydrates: Classification and functions of	15hrs
Carbohydrates	Carbohydrates	
and		
Lipids	 Structure, Function, properties and reactions of Monosaccharaides. Structures and functions of biologically important Disaccharides. Polysaccharides-Homo and Hetero Polysaccharides, Mucopolysaccharides, Bacterial cell wall poly- saccharides Glycoproteins and their biological functions. Lipids: Classification and functions of Lipids 	
	 Classification, nomenclature and properties of fatty acids, essential fatty acids. Significance of the lipids of Biological Significance-Phospholipids, sphingolipids, glycol-lipids, cerebrosides, gangliosides, Prostaglandins and Cholesterol. 	

Unit II: Amino Acids	Amino acids and Protein:	15hrs
Amino Acids		
Annio Acius		
and	• Classification, Structure and properties of Amino acids.	
Proteins	Classification of proteins: Globular Proteins, Fibrous	
	Protein and Membrane Protein	
	• Functions of Protein.	
	Forces stabilizing protein structure	
	• Different Level of structural organization of proteins.	
	• Denaturation and renaturation of proteins.	
	Examples of Proteins	
	• Definition, Nomenclature and classification of	
	Enzymes. Cofactors, coenzyme, prosthetic groups,	
	holoenzyme and apoenzyme.	
Unit III:	Enzymes:	15hrs
Enzymes	• How do Enzymes work-Concept of activation energy, Lock and Key Model, Induced Fit Model and Substrate strain theory.	
	• Kinetics of enzyme actions- factors affecting enzyme activity. Enzyme kinetics, Km.	
	• Enzymes inhibition – competitive, Non-competitive & uncompetitive inhibition.	
	• An overview of isoenzymes, multienzyme complexes and Allosteric enzymes.	

Reference Books:

- 1. Berg, JM Tymoczko, JL. Gatto, GJ. Stryer, L. (2015). Biochemistry. (8th ed.) W H Freeman and Company New York.
- 2. Nelson DL. Cox MM. (2017) Lehninger Principles of Biochemistry (7th ed.). W H Freeman New York.
- 3. Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- 4. Rodwell VW. Bender D. Botham KM. Kennelly PJ Weil PA. (2018). Harper's illustrated Biochemistry. (31st edition) McGraw-Hill Education
- 5. Text Book of Biochemistry by Rafi M.D. 3rd edition University press
- 6. Jain JL. Jain S. Jain N. (2005). Fundamentals of Biochemistry. (6th edition). S Chand and Company Ltd.
- 7. Satyanarayana U. Chakrapani U. (2013). Biochemistry. (4th edition). Elsevier and Books and Allied (P) Ltd.

Major Course-6 Membrane Biology and Genetics		
Semester	III	
Course Name	Major-6 Membrane Biology and Genetics	
Course Code	UBT3MBG	
Credit	03 Theory+01Practical	
Hours/Week	03 Theory+02 Practical	

Course Objectives-

• The objective of this course is to have a firm foundation in the fundamentals of membrane biology and genetics.

Course Outcomes: After completion of this course students will be able to:

- Discuss membrane structure, transport, types and major functions of cytoskeleton.
- Elaborate variation in chromosome structure and number
- Solve problems based on two-point, three-point cross, tetrad analysis, genotypic frequencies and allelic frequencies

Units	Course Description	Hrs.
Unit I	Membrane Structure and Function-	15h
Membrane	Chemical composition of membranes, Membrane	
Biology and	lipids; Membrane proteins	
Cytoskeleton	• Functions of membranes: Transport, Cell-cell	
	interactions, Receptors.	
	Membrane Model: Fluid Mosaic Model	
	Membrane transport:	
	• Active Transport, Passive Transport, Diffusion and	
	Osmosis	
	 Bulk transport: endocytosis and exocytosis 	
	Membrane junctions	
	Classification of junctions: Occluding: Tight,	
	Anchoring: Desmosomes, Channel- forming: Gap,	
	Plasmodesmata.	
	Cytoskeleton	
	• Microtubules, Microfilaments, Intermediate	
	Filaments: Structure, composition, assembly and	
	disassembly, functions	
	Structure and organization of eukaryotic genetic	15h
	material	
	• Histone and non-histone proteins, Nucleosome	
	structure.	
	• Heterochromatin, Euchromatin, Polytene	

	Chromosomes, Lampbrush chromosome.	
	• Chromosomal banding techniques, Karyotype and	
Unit II	Idiogram	
Genetics	• Variation in Chromosomal Structure and Number:	
	Deletion, Duplication, Inversion, Translocation,	
	Aneuploidy, Euploidy and Polyploidy	
	• Syndromes- Klinefelter, Turner, Cri-du-Chat,	
	Trisomy-21, Trisomy-18 and Trisomy-13.	
	Dosage Compensation and Barr body.	
Unit III	Overview of genetic linkage.	15h
Gene Mapping	Gene Mapping in eukaryotes:	
and Population	• Two-point Cross; Three-point Cross	
genetics	genetics • Pedigree analysis- Dominant and Recessive traits for	
	Autosomal and Sex Chromosome; Tetrad analysis	
	Population Genetics	
	• Genetic structure of populations.	
	Genetic structure of populations.Genotypic frequencies and allelic frequencies,	

References: -

- 1. Genetics, (2006) Strickberger MW (Prentice Hall, India)
- 2. Human Genetics- A. M. Winchester MacMillan Press
- 3. iGenetics- Peter Russell -Pearson Education
- 4. Cell and Molecular Biology De Robertis- Lippincott Williams& Wilkins
- 5. Cell and Molecular Biology- Concepts and Experiments-Karp Wiley International

Department of Biotechnology

Practical Major Course-5 and 6

٦

Tractical Wajor Course-5 and 0		
Semester	III	
Course Name	Practical- Biochemistry (UBT 3BIC) and Membrane Biology and	
	Genetics UBT3MBG	
Course Code	UBT3PR1	
Credit	02	
Hours/Week	04	

Course Objectives-

To develop skillsets in biochemical techniques and solve the problem on genetic mapping. **Course Outcomes:** After completion of this course students will be able to:

- Demonstrate different biochemical techniques to analyses biomolecules like proteins, enzymes and lipids etc.
- Solve problems based on two-point, three-point cross, tetrad analysis, genotypic frequencies and allelic frequencies

	Major Practical	Credits-2
1.	Estimation of Amino acids by Formal Titration.	•
2.	Estimation of reducing sugars by DNSA method.	
3.	Protein estimation by biuret method.	
4.	Isolation of Casein from Milk	
5.	To study the effect of substrate concentration on the activity of the	he given enzyme.
6.	To study the effect of pH on the activity of the given enzyme.	
7.	To study the effect of Temperature on the activity of the given e	nzyme.
8.	Effect of inhibitors on enzyme activity	
9.	Isolation of Starch from plant source.	
10.	Estimation of starch by Anthrone method.	
11.	Separation of lipids by TLC method.	
12.	Effect of different concentrations of sodium chloride on RBC and determination	
	of the concentration isotonic to blood.	
13.	Study of Polytene Chromosome	
14.	4. Mapping problems based on tetrad analysis.	
15.	Mapping based on two-point cross and three-point cross.	
16.	Problems based on pedigree analysis- Autosomal and Sex-Linke	ed
17.	Study of normal karyotype.	
18.	Study of abnormal karyotype: - Klinefelter syndrome, Turner syndrome, Turn	yndrome, Cri-du-

	Chat syndrome, Trisomy-21, Trisomy-18 and Trisomy-13.
19.	Barr body identification in cells of Buccal smear.
20.	Study of mitosis using pre-treated root tips of Allium cepa to study the effect of
	mutagens- chemical (colchicine/ PDB) on mitosis.

Minor Course-2 Medical Microbiology		
Semester	III	
Course Name	Minor -2 Medical Microbiology	
Course Code	UBT3MEM	
Credit	02 Theory+02Practical	
Hours/Week	02 Theory+04Practical	

Course Objective: The objective of this course is to gain insight into Disease Factors and Processes and Diseases Caused by Microorganisms.

Course Outcome: By the end of the course the student will be able to:

- Summarize the factors playing a role in causing a disease.
- Discuss the various aspects of Systemic Infections including Causative Agents, symptoms and Prophylaxis.
- Explain different causative organisms involved in Skin and Respiratory infections GI, STD and Nosocomial infections

Units	Course Description	Hrs.
UNIT I Medical Microbiology- Causative Organisms- I	 Infection: Factors Affecting the Course of Infection and Disease; Mechanisms of Infection and Virulence Factors. Types of Infections; Signs and Symptoms; Koch's Postulates. Characteristics, Transmission, Course of Infection, Lab Diagnosis, Prevention and Control Skin: S. aureus Respiratory Tract Infections: M. tuberculosis, S. pneumonia 	15hrs.
UNIT II Medical Microbiology- Causative Organisms- II	 Urinary Tract Infections: <i>E. coli</i> Characteristics, Virulence- Pathogenesis and Immunity, Clinical Disease, Lab Diagnosis, Prophylaxis and Treatment). GI Tract Infections: Salmonella and Shigella spps. Sexually Transmitted Diseases: Syphilis and Gonorrhoea. Nosocomial Infections: Pseudomonas aeruginosa 	15hrs.

References:

- 1. Microbiology–6th Edition (2006), Pelczar M.J. Chan E.C.S., Krieg N.R., The McGraw Hill Companies Inc. NY
- 2. Presscott's Microbiology, 8th edition (2010), Joanne M Willey, Joanne Willey, Linda Sherwood, Linda M Sherwood, Christopher J. Woolverton, Chris Woolverton, McGrawHil Science Engineering, USA
- 3. Text book of Medical Microbiology, Anantnarayan
- 4. Microbiology- Frobisher
- 5. General Principles of Microbiology- Stanier
- 6. Fundamental Principles of Bacteriology A. J. Salle McGraw Hill.

Minor Course Practical		
Semester	III	
Course Name	Practical-Medical Microbiology UBT3MEM	
Course Code	UBT3PR2	
Credit	02	
Hours/Week	04	

Course Objectives: The course aims to teach students how to use different media and tests to find and identify bacteria, and to apply diagnostic tools to study infections.

Course Outcomes :

- Describe how selective and differential media and biochemical tests are used to isolate and identify microorganisms.
- Explain the methods for identifying specific bacteria like *Staphylococcus aureus*, *E. coli*, Salmonella, Shigella, and Pseudomonas using biochemical tests.
- Apply rapid multitest systems and diagnostic tests to identify bacteria and investigate infections, as well as isolate normal microbial flora from the skin.

	Minor-II Medical Microbiology	Credits-2
1.	Study of selective and differential media for isolation of micr	oorganisms
2.	Use of biochemical test (Sugar fermentations, IMViC, Catala	se etc.)
3.	Isolation & Biochemical identification of S.aureus -, Catalas	e, Coagulase Test.
4.	Biochemical identification of <i>E. coli</i> -Sugar Fermentations, IN	/IViC.
5.	Biochemical identification of Salmonella-Isolation, Sugar Fer	rmentations, TSI Slant.
6.	Biochemical identification of Shigella-Isolation, Sugar Ferme	entations, TSI Slant.
7.	Biochemical identification of Pseudomonas - Isolation, Ureas TSI Slant.	se test, Oxidase Test,
8.	Rapid Multitest Systems - The API 20E System	
9.	Isolation of Normal Microbial flora from the skin	
10.	Widal test	
11.	VDRL Test	
12.	GI Tract Infections: Case study	
13.	Skin Infections: Case study	

14. Urinary Tract Infections: Case study

Vocational Skill Course-3 Food Biotechnology	
Semester	III
Course Name	Food Biotechnology
Course Code	UVSC3FBT
Credit	2
Hours/Week	60 Hrs

Course Objective: The course aims to provide students with the skills to analyze and evaluate food quality, detect contaminants and adulterants, prepare value-added food products, and understand food safety and packaging practices.

Course Outcomes:

- Describe the methods used to detect food contaminants, identify food adulterants, and analyze the quality of various food products.
- Explain the processes involved in food spoilage, food packaging, and the determination of shelf life, as well as sensory evaluation techniques.
- Apply laboratory techniques to analyze food samples for proteins, fats, carbohydrates, and other components, and to prepare value-added food products and conduct food safety audits.

Sr. no	Experiment	60
		Hours
1	• Biomolecules and function of biomolecules present in food	4hrs
	sample: Protein, lipids and carbohydrates	
	• Determination of flour gluten	
2	• Food spoilage, sources and types of microorganism involved	6hrs
	in food spoilage.	
	• Isolation of bacteria and molds from foods; vegetable and	
	fruits/meat/sea foods/ eggs and poultry/ milk and milk	
	products/ sugar, salts and spices/Fermented foods	
3	Value added food products	4hrs
	• Preparation of value-added Food products (jams, jellies and	
	sauce, Sauerkraut, Kimchi etc.)	
4	• Food contaminations and its sources in milk or water	бhrs
	• Detection of coliforms from milk by MPN method	
5	• Food adulterations & types of adulterants present in food	4 hrs
	• Detection of adulterants in different food samples for drug	
	and pesticide residues in milk / milk products/ fruit/	
	Vegetable/ spices	
6	Food packaging & types of packaging and storage	4hrs
	• Shelf-life calculation for food products.	

7	Food quality and quality assurance	3hrs
	• Food Tests for: presence of moisture content, proteins,	
	starch, carbohydrates, fats (Qualitative) from the given food	
	sample.	
8	Analytical method pf food analysis	5hrs
	• Determination of fat content in food by Soxhlet method.	
9	• Sensory evaluation of food and quality indices	8hrs
	• Sensory Evaluation of various food products: Hedonic scale,	
	• Dual trio test, Ranking difference and triangle test.	
	Texture evaluation of various food samples (Crispies, cookies,	
	biscuits, snack foods)	
10	• Food safety and quality evaluation	6hrs
	• Quality Evaluation of various food stuffs- cereals, pulses,	
	honey, sugar, tea, coffee	
11	Documentation in food safety	4hrs
	Data Preparation for food safety Audit	
12	• Visit to food processing or food packaging industry.	6hrs

Reference:

- 1. Deman JM, Principles of Food Chemistry, 2nd ed. Van Nostrand Reinhold, NY 1990.
- 2. Desrosier NW and Desrosier JN, The Technology of Food Preservation, CBS Publication, New Delhi, 1998.
- 3. Garbutt, John. Essentials of Food Microbiology, Arnold, London, 1997
- 4. Marriott, Norman G. Principles of Food Sanitation, AVI, New York, 1985
- 5. Meilgard (1999). Sensory Evaluation Techniques, 3rd ed. CRC Press LLC, 1999.

SEMESTER IV

Major Course-7 METABOLISM		
Semester	IV	
Course Name	Major-7 Metabolism	
Course Code	UBT4MET	
Credit	03 Theory+01Practical	
Hours	03 Theory+02 Practical	

Course Objectives-

• The objective of this course is to gain an insight into the Metabolic Processes associated with Catabolism of Carbohydrates, Proteins, Amino Acids, Lipids and Nucleotides and introduction to enzymes.

Course Outcomes: After completion of this course students will be able to:

- Elaborate on the Metabolic Pathways of Carbohydrates, Amino Acids, Lipids and Nucleotides.
- Discuss the Role of Energy Rich Molecules in Metabolism.
- Explain the Protein structure, classification and role of Enzymes as biological catalysts.

Units	Course Description	Hrs.
UNIT I: Carbohydrate Metabolism	 Carbohydrates metabolism: Glycolysis and its regulation Citric Acid Cycle- Anaplerotic reactions Gluconeogenesis; Pentose Phosphate Pathway with its significance Electron Transport and Oxidative Phosphorylation. Bioenergetics: Law of thermodynamics, ATP as Energy Currency, Structure of ATP, Hydrolysis, Other Energy Rich Compounds other than ATP like PEP, Creatine Phosphate, etc 	15Hrs
Unit II: Lipid and Nucleotide Metabolism	 Lipid Metabolism: Mobilization, Transport of Fatty Acids. Beta Oxidation of Fatty Acids; Overview of Oxidation of Unsaturated Fatty Acids and Odd Chain Fatty Acids. Ketone body formation Nucleotide Metabolism: Pathways of nucleotide Biosynthesis, Degradation of Purines and Pyrimidines. 	15Hrs

Unit III:	Amino acids and Proteins:	15Hrs
Amino Acid	Amino Acid Breakdown: Deamination, Transamination, Urea	
Metabolism	Cycle, Breakdown of Glucogenic and Ketogenic Amino	
	Acids. Synthesis of essential amino acids,	
	Inborn Errors in Protein Metabolism	

Reference Books:

- 1. D. Voet and J. G. Voet, Biochemistry, J. Wiley & Sons, 2011, 4th
- 2. D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry, WH Freeman, 2017, 7 th edition
- 3. J. M. Berg, et. al., Biochemistry, WH Freeman, 2015, 8 th edition
- 4. H. Lodish, et.al., Molecular Cell Biology, W H Freeman & Co (Sd), 2016, 8 th edition
- 5. Satyanarayana U. Chakrapani U. (2013). Biochemistry. (4th edition). Elsevier and Books and Allied (P) Ltd
- 6. Text Book of Biochemistry by Rafi M.D. 3rd edition University press

Major Course-8 Molecular Biology-II		
Semester	IV	
Course Name	Major-8 Molecular Biology-II	
Course Code	UBT4MOB	
Credit 03 Theory+01Practical		
Hours	03 Theory+02 Practical	

Course Objectives-

The objective of this course is to provide students with a comprehensive understanding of the fundamental concepts and techniques in molecular biology. To build a firm foundation of molecular biology

Course Outcomes: After completion of this course students will be able to:

- Compare the Prokaryotic and Eukaryotic transcription
- Elaborate Translation and posttranslational events
- Illustrate different types of prokaryotic Operon systems.

Units	Course Description	Hrs.
UNIT I	Transcription and RNA processing	15h
Transcription	• RNA structure and types of RNA,	
	 Transcription in prokaryotes: Prokaryotic RNA polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains. Overview of Eukaryotic transcription. Splicing and processing: processing of pre-mRNA: 5' cap formation, polyadenylation, splicing 	
Unit II Translation	 Genetic code and Wobble Hypothesis. Protein Synthesis: Translation in Prokaryotes & Eukaryotes- (Formation of aminoacyl tRNA, Initiation, Elongation & Termination of polypeptide). Post translational Modification of proteins. 	15h
Unit III Regulation of gene Expression	 Concept of gene and its organization Regulation of gene expression: Positive & Negative regulation, The operon model for transcriptional regulation (Lac operon & Trp operon) control of lac operon, regulation of Trp operon. Recombination-Holliday Model 	15h

References

- 1. Russell, P. J., & Gordey, K. (2002). IGenetics, San Francisco: Benjamin Cummings.
- Russell, P. J. (2000). Fundamentals of genetics. Longman Publishing Group. Nicholl, D. S. T. (2002).
- 3. An Introduction to Genetic Engineering (Studies in Biology). India: Cambridge University Press.
- 4. Brown, T. A. (2013). Gene Cloning and DNA Analysis: An Introduction. Germany: Wiley.
- 5. Genetic Engineering: Principles and Practice. (n.d.). India: McGraw-Hill Education.
- 6. A Textbook of Biotechnology by R C Dubey 4th Ed
- 7. Biotechnology: Fundamentals and Applications by S. S. Purohit
- 8. Principles of molecular biology, 2nd edn –Veer bala rastogi paperback

Practical Major Course-7 and 8		
Semester	IV	
Course Name	Practical - Metabolism (UBT4MET) and Molecular Biology- II (UBT4 MOB)	
Course Code	UBT4PR1	
Credit	02	
Hours/Week	04	

Course Objectives: The course aims to equip students with practical skills and theoretical knowledge in molecular biology techniques and biochemical assays for analyzing and interpreting biological samples and assessing organ function.

Course Outcomes : -

- 1. Apply molecular biology techniques such as genomic DNA extraction, RNA extraction, and protein estimation to analyze and interpret biological samples.
- 2. Describe the principles and methodologies of spectrophotometry for determining the purity of DNA, and agarose gel electrophoresis for the separation of nucleic acids.
- 3. Explain the procedures and significance of various biochemical assays, including organ function tests and enzyme activity measurements, to assess the physiological and pathological states of biological systems.

Sr. No.	Practical- Major Metabolism	Credit 2
1.	Extraction of genomic DNA from bacteria and Separation by Agarose G Electrophoresis	el
2.	Determination of Purity of DNA using spectrophotometry	
3.	Extraction of RNA from Prokaryotic/Eukaryotic cells.	
4.	Expression of β -galactosidase and Measurement of Activity.	
5.	Estimation of protein by Lowry's method	
6.	Determination of Total, LDL and HDL Cholesterol in Serum.	
7.	Determination of Lactate Dehydrogenase (LDH) Activity in Blood Serur	n
8.	Organ Function Tests: Liver (SGOT)	
9.	Organ Function Tests: Liver (SGPT)	
10.	Organ Function Tests: Kidney (Uric Acid in Urine)	

11.	Organ Function Tests: Kidney (Creatinine in Urine)
12.	Qualitative Detection of Ketone Body in Urine.
13.	Isolation of Mitochondria and Demonstration of ETC using a Marker Enzyme
14.	Separation of Phenylketonuria paper by Paper Chromatography

References:

- 1. Enzymes: Biochemistry, Biotechnology & Clinical chemistry, (2001) Palmer Trevor, Publisher: Horwood Pub. Co., England.
- 2. An Introduction to Practical Biochemistry.3rd Edition, (2001), David Plummer, Tata McGraw Hill Edu. Pvt. Ltd. New Delhi, India
- 3. Advanced Methods in Protein Microsequencing, Witmann
- 4. Methods in Molecular Biophysics, Igor N S, N Zaccai & J Zaccai, (2007) Cambridge

Minor Course-3 Bioprocess Technology			
Semester	IV		
Course Name	Bioprocess Technology		
Course Code	UBT4BPT		
Credit	02 Theory+02Practical		
Hours	02 Theory+04Practical		

Course Objectives:

The course enable student to understand aspects of bioprocess technology encompasses basics skills applied in fermentation technology and build a foundation for more advanced studies in bioprocess technology.

Course Outcomes:

- Explain principles underlying design of Screening, Fermenter and Fermentation Process.
- Summarize In-vivo and In-vitro Assay of Industrial Products.

Units	Course Description	Hrs.
UNIT I Fermenter and Fermentation Processes	 Screening of Strains: Primary Screening and Secondary Screening Design of a Fermenter: Stirred Tank Fermenter- Basic Design; Parts of a Typical Industrial Fermenter Fermentation Media: Components; Design and Optimization. Process Parameters: pH, Temperature, Aeration, Agitation, Foam Types of Fermentation: Surface and Submerged; Batch and Continuous, Aerobic and Anaerobic 	15
UNIT II In-vivo and In-vitro Assay of Industrial Products	 Product Isolation and Purification. Outline of Penicillin and Ethanol Production by Fermentation along with flow diagram Assay of Industrial Products: Physical- Chemical and Biological; Types and Subtypes; Kinetics Half-Life Determination of Pharmacological Products Overview of Bioavailability and Bioequivalence Studies: History of Bioavailability Studies, Formulations and 	15

Routes	of	Administration,	Study	of	
Bioequiv	alenc	e Studies			

Reference Books:

- Principles of Fermentation Technology by Peter F Stanbury, Allan Whitaker and Stephen J Hall (2nd Edition)
- 2. Industrial Microbiology- A. H. Patel
- 3. Industrial Microbiology- L. E. Casida- John Wiley & Sons
- Microbiology- Frobisher Design and Analysis of Bioavailability and Bioequivalence Studies by Shein-Chung Chow, Jen-pei Liu (3rd Edition)

	Minor Course-3 Practical			
Semester	IV			
Course Name	Practical -Bioprocess Technology (UBT4BPT)			
Course Code	UBT4PR2			
Credit	02			
Hours	04			

Course Objectives:

• The course aims to provide students with practical skills and theoretical understanding of microbial growth patterns, fermentation processes, antibiotic production, and the isolation and characterization of beneficial microorganisms, equipping them for applications in industrial microbiology and biotechnology.

Course Outcomes:

- Apply microbiological and biochemical techniques to study microbial growth patterns, screen for antibiotic-producing strains, and produce and purify ethanol on a lab scale.
- Describe the processes of microbial fermentation, including the lab-scale production and purification of ethanol, and the estimation of alcohol and penicillin concentrations from broth cultures.
- Explain the principles behind the isolation and characterization of lactic acid bacteria from probiotic foods and the significance of these techniques in industrial microbiology and biotechnology.

Sr.	Sr. Bioprocess technology (Practicals)	
No.		Hrs.
1.	Study of <i>E. coli</i> diauxic Growth Curve- (Lactose and Glucose).	4 hrs.
2.	Screening for an Antibiotic Producing Strain of Microorganism	8 hrs.
3.	Lab Scale Production of Ethanol.	4 hrs.
4.	Purification of Ethanol from Broth Culture of Saccharomyces spp. By Distillation	3 hrs.
5.	Estimation of Alcohol from Recovered Broth by Dichromate Method.	4 hrs.
6.	Estimation of Penicillin from Recovered Broth by Biological (Bioassay) Method.	4 hrs.
7.	Isolation of lactic acid bacteria from Probiotic foods.	3 hrs.

Skill Enhancement Course-3				
Semester	IV			
Course Name	Practical-Bioanalytical techniques			
Course Code	USEC4BTE			
Credit	02			
Hours	60 hours			

Course Objectives: -

- Explore a variety of bioanalytical techniques, such as chromatography, spectroscopy (UV-Vis), electrophoresis, and immunoassays etc.
- Acquire hands-on experience in sample preparation, instrument operation, and data analysis for bioanalytical methods.

Course Outcomes:

After completion of this course students will be able to:

- Acquire hands-on experience in sample preparation, instrument operation, and data analysis for bioanalytical methods.
- Apply bioanalytical techniques to the analysis of biological molecules such as proteins, nucleic acids, lipids, and metabolites.
- Develop skills in interpreting complex data obtained from bioanalytical experiments.
- Gain a solid understanding of the fundamental principles and concepts underlying bioanalytical techniques.

Sr. No.	Title
1.	Study of different Isolation techniques of Biomolecule.
	Isolation of proteins from plant source/ bacterial source
2.	Study of different separation technique Centrifugation and types of centrifugations,
	types of rotors
	Separation of cell organelles using density gradient method / Isopycnic method
3.	Separation and partial purification by salt precipitation method of proteins
	Extraction and partial purification of proteins/ enzymes (Amylase) followed by
	dialysis.
4.	Study of different types of chromatographic techniques
	Separation of different plant pigment by Thin Layer Chromatography
5.	Study the extraction of lipids/ fats from solid material Electrophoresis
	Demonstration of Soxhlet Apparatus

6.	Study the different electrophoretic separation techniques
	Separation of proteins by using serum electrophoresis
7.	Study the different paper electrophoretic separation techniques
	Separation of biomolecules by using paper electrophoresis like Hemoglobin/ Amini
	acid.
8.	Study the immunological techniques to study the interaction between antigen and
	antibodies
	Ouchterlony method
9.	To study on viscosity on liquids
	Viscosity study of protein
10.	Study the Principle and instrumentation of HPLC
	Qualitative analysis of caffein in given sample by using HPLC
11.	Study the Principle and Instrumentation of Gas Chromatography
	Study the separation of volatile compounds from a mixture by using Gas
	chromatography

II विद्या विनयेन शोभते॥

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: Bachelors in Science (T.Y. B. Sc.)

Credits: 44 (Semester V and VI)

SYLLABUS (Approved in the Academic council meeting held on 13/06/2024)

B. Sc. Biotechnology

Revised as per Choice Based Credit System (60:40) w. e. f. Academic Year 2024-25

(Semester V)							
Course code	Title	Theory/ Practical	Marks	Credits	No. of Lectures & Practical		
UBT5CBI	Cell biology and ATC	Theory	100	2.5	60		
UBT5MMI	Medical Microbiology & Instrumentation	Theory	100	2.5	60		
UBT5GMB	Genomes and Molecular Biology	Theory	100	2.5	60		
UBT5MBI	Marine Biotechnology and Developmental Biology	Theory	100	2.5	60		
UBT5PR1	Cell biology+ Medical Microbiology & Instrumentation	Practical	100	3.0	72		
UBT5PR2	Genomes and Molecular Biology+ Marine Biotechnology and Developmental Biology	Practical	100	3.0	72		
UBT5BIS	Applied Component: Biosafety	Theory	100	2.0	48		
UBT5PR3	Applied Component: Biosafety	Practical	100	2.0	48		
UBT5HDP	Hydroponics	Theory	100	2.0	48		
		TOTAL	800	22	528		

T.Y. B.Sc. Biotechnology Course Structure

(Semester VI)

Course code	Title	Theory/ Practical	Marks	Credits	No. of Lecture s & Practic al
UBT6BIC	Biochemistry	Theory	100	2.5	60
UBT6IMI	Industrial Microbiology	Theory	100	2.5	60
UBT6PNE	Pharmacology and Neurochemistry	Theory	100	2.5	60
UBT6ENB	Environmental Biotechnology	Theory	100	2.5	60
UBT6PR1	Biochemistry + Industrial Microbiology	Practical	100	3.0	72
UBT6PR2	Pharmacology - Neurochemistry and Environmental Biotechnology (50M)+ Project work (50M)	Practical	100	3.0	72
UBT6ABT	Applied Component: Agribiotechnology	Theory	100	2.0	48
UBT6PR3	Applied Component: Agribiotechnology	Practical	100	2.0	48
UBT6FSC	Forensic Science	Theory	100	2.0	48
		TOTAL	800	22	528

Preamble:

Biotechnology is one of the youngest branches of Life Science, which has expanded and established as an advanced interdisciplinary applied science in the last few years. Biotechnology at the core envisages the comprehensive study of Life and the Interdisciplinary potential of Biotechnology has led to a unique status for Biotechnology in Research and Industry.

Biotechnology has its applications in almost every field touching practically every human activity. The applied aspect of Biotechnology is now getting established with its applications in Industry, Agriculture, Health and Environment, Biotechnology is the leading science expanding exponentially.

Biotechnology demands a trained, skilled human resource to establish the Industry and Research sectors. The field is novel and still expanding which demands inputs in Infrastructure and Technology. The need of the hour is to design appropriate syllabi which keeps pace with changing times and technology with emphasis on applications while elucidating technology in depth. The syllabi till today had been sufficient to cater to the needs of students for building up their careers in industry and research. However, with the changing scenario at local and global level, we feel that the syllabus orientation should be altered to keep pace with developments in the education and industrial sector. Theory supplemented with extensive practical skill sets will help a graduate student to avail the opportunities in the applied fields (research, industry or institutions), without any additional training. Thus, the college itself will be developing trained and skilled man-power.

Biotechnology being an interdisciplinary subject, this restructured syllabus will combine the principles of physical, chemical, and biological sciences along with developing advanced technology. Biotechnology curricula are operated at two levels viz. undergraduate and postgraduate. The undergraduate curricula are prepared to impart primarily basic knowledge of the respective subject from all possible angles while postgraduate syllabus emphasizes on more applied courses. In addition, students are to be trained to apply this knowledge particularly in dayto-day applications of biotechnology and to get a glimpse of research.

The current syllabus includes all basic concepts of biological sciences. Students will also be introduced with emerging fields in Biotechnology like Marine biotechnology, Environmental biotechnology, Pharmacology, Agribiotechnology etc. Project component has been introduced in the curriculum to provide good quality selflearning. It is hoped that the revised syllabus shall serve its objective of promoting outcome-based learning to meet the changing needs of the biotechnology sector.

Teaching pattern: One (01) Credit would be of thirty- forty (30-40) learning hours; of this more than fifty percent of the time will be spent on classroom instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars/workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (60L as classroom teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be for 48 min. The names of the reference books provided in the syllabus are for guidance purposes only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

Examination pattern: The performance of the learners shall be evaluated into two components. The learner's Performance shall be assessed by Internal Assessment with 40% marks in the first component by conducting the Semester End Examinations with 60% marks in the second component. **Theory:**

The question paper for the Term End Exam would be of 60 marks consisting of 4 Questions (15M each), of which one question from each unit in the syllabus. Questions may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

The question paper would be set for 120 marks including internal options.

Practical:

- Distribution of marks for the experiments carried out during the examination:
- Semester V (50M/ paper): Major: 20M; Minor: 10M; Viva: 10M; Journal 10M.
- Semester VI (50M/paper): Major (x2): 40M; Journal: 10M; Project 50M
- The report could be around 25-30 pages with appropriate referencing and formatting. Marks distribution for the project would be as follows: 25M documentation, 15M presentation, 10 M viva and interactions;
- Students would undertake a project for 1 months during the last semester for 50 M. The project should include either of the following: One/ more major instrumentation

OR

One / more major technique/s required in the field of interest OR Bioinformatics OR Biostatistics.

BACHELOR'S IN SCIENCE (B. Sc.)

Programme Outcomes

PS01	Students will learn the basic concepts of Chemistry and analytical chemistry applied in Biological Sciences.
PSO2	An education in Cell biology, Biochemistry, Animal and plant physiology, human genetics and Immunology will impart knowledge to the students about cellular structure, biomolecules, metabolic pathways, its regulation along with defense mechanisms and physiological processes in plants and animals.
PSO3	Students will also learn the concepts of biodiversity, ecology, environment and its conservation.
PSO4	Students will gain basic information of microbial cultures, sterilization methods and enzyme production. They will be taught biosafety guidelines and good laboratory practices.
PSO5	Introduction of recent topics like Drug delivery, Marine biotechnology, Bioinformatics will impart knowledge of mechanism of drug delivery, drug designing and applications of marine organisms as food, nutraceutical and cosmetics etc.
PSO6	Students will understand the principles and the applications of molecular biology and genetic engineering methods with an emphasis on the application of recombinant DNA technology to animals, plants and microbial organisms.
PS07	The course will give the knowledge of Bioethics, IPR, entrepreneurship, scientific writing, Communication, and management skills to the students.
PSO8	Students will get hands-on training of techniques used in Cell Biology, Biochemistry, Microbiology, Immunology, Molecular Biology and Genetic Engineering.

Scheme of Examination (Amended) Faculty of Science (Under-graduate Programmes)

Choice Based Credit System (CBCS)

Revised Scheme of Examination

1. For 4 or 3 Credits Courses (Discipline Specific Courses (DSC)/Major/Minor

Courses)

(100 Marks)

The performance of the learners shall be evaluated into two components, as the first component by 'Continuous Internal Assessment (CIA)' with 40% marks and as the second component by conducting the 'Semester End Examinations (SEE)' with 60% marks. The allocation of marks for the Continuous Internal Assessment (CIA) and Semester End Examinations are as shown below:

A) Continuous Internal Assessment (CIA): 40 % 40 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	Test on Practical Skills/ Case studies /Group/ Individual Survey Project/Presentation and write up on the selected topics of the subjects/ Book Review / Open Book Test	15 Marks
03	Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibition of leadership qualities in organizing related academic activities	05 Marks

Question Paper Pattern (Periodical Class Test)Maximum Marks: 20Duration: 40 MinutesQuestions to be set: 02Duration: 40 Minutes

All Questions are Compulsory

Question No.	Particular	Marks
Q-1	Match the Column / Fill in the Blanks / Multiple	10 Marks
	Choice Questions/True or False/ Answer in One	
	or Two Lines (Concept based Questions) (1	
	Marks / 2 Marks each)	
Q-2	Answer in Brief (Attempt any Two of the Three)	10 Marks
	(5 Marks each)	

B) Semester End Examination (SEE): 60 % 60 Marks

•Duration: The examination shall be of 2 hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be three/four questions each of 20/15 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the
- allocation of marks depends on the weightage of the unit.
- Practical Examination (PE) for Discipline Specific Courses (DSC) / Minor Courses 50 Marks

The Practical Examination (PE) shall be of 50 marks for Discipline Specific Courses (DSC)/Minor Courses.

• Practical Examination (PE) for Major Courses (Semester III & Semester IV) 100 Marks

The Practical Examination (PE) shall be of 100 marks for Major Courses of Semester III & Semester IV.

B) Semester End Examination (SEE): 60 % 30 Marks

• Duration: The examination shall be of 1 hour duration.

Question Paper Pattern

Theory question paper pattern

1. There shall be two/three questions each of 15/10 marks.

2.All questions shall be compulsory with internal options.

3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

SEMESTER -V

Course Description	
Semester	V
Course Name	Paper-I (Cell Biology and Animal Tissue Culture)
Course Code	UBT5CBA
Credit	2.5
Hours	60 Hrs.

Cour	Course Objectives: After Completion of this course:	
•	Students will get knowledge of different types of extracellular signals and	
	receptors, and explain their functional significance.	
•	The students will be able to learn how genetics contributes to predisposition and	
	progression of cancer. It will help the students to understand how	
	immunotherapy is, and can be, used to treat human illness	
•	Students will get introduced to the principles and applications of animal cell	
	culture.	
•	Students will be able to illustrate different types of Animal Tissue Culture	
	Techniques	

Course	Course Outcomes: After completion of the course students will be able to	
CO-1	Discuss the major groups of intracellular-and membrane-bound receptors, be	
	able to give examples of such receptors.	
CO-2	Explain different types of cancer, its diagnosis, treatment and preventive measures.	
CO-3	Describe design, layout of ATC Lab along with equipment used in tissue culture.	
CO-4	Identify media constituents and media formulation strategies and techniques for mammalian cell culture.	

	Course Description	Lectures
Unit I Cell Signaling	Cell signaling and signal transduction: Introduction General Principles of Cell Signaling.	15h
	 Signaling via G-Protein-linked Cell- Surface Receptors, Signaling via Enzyme-linked Cell-Surface Receptors Target-Cell Adaptation. The Logic of Intracellular -Signaling: Lessons from Computer- based "Neural Networks. 	

Unit II Cancer Biology	 Introduction to cancer, Characteristics of normal cell and cancerous cell, Tumour- Benign and malignant. Types of cancer Cancer as a Micro-evolutionary Process, invasion metastasis, angiogenesis. Oncogenes and tumour suppressor genes; The Molecular Genetics of Cancer. Cancer and Virus, Cancer diagnosis and treatment, Preventive measures for cancer. 	15h
Unit III ATC-I	 Introduction to tissue culture. Advantages and limitations. Application of tissue culture Design and layout: Sterile handling area, incubation, hot room, service bench, preparation, storage. Equipment, glassware and Sterilization: Bio safety Cabinet, CO2 incubator, inverted microscope etc. Glassware, plastic ware, pipetting device, tissue culture vessels 	15h
Unit IV ATC-II	 Tissue culture media Physiochemical properties, Balance Salt Solution, complete media, Serum, Serum Free Medium-Advantages and Disadvantages Types of cell culture: Organ culture, primary cultures and cell lines with examples, Stem cell cultures - therapeutic cloning, carcinoma stem cells, germ cell culture, and uses. 	15h

References:

1.	Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M., W.H. Freeman and Co., USA.
2.	Molecular Biology of the Cell, 5th Edition (2007) Bruce Albert's, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA.
3.	Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA.
4.	The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA.

Course Description	
Semester	V
Course Name	Paper II (Medical Microbiology & Instrumentation)
Course Code	UBT5MMI
Credit	2.5
Hours	60 Hrs.

Cour	Course Objectives: After Completion of this course:		
•	The students will get knowledge of viral replication strategies; and compare and contrast replication mechanisms used by viruses relevant for human disease.		
•	Students will learn the mechanism of action of chemotherapeutic drugs and resistance.		
•	Students will learn about new emerging diseases and new vaccine strategies.		
•	Students will be able to apply basic principles and applications of analytical techniques used.		

Course	Outcomes: After completion of the course students will be able to:
CO-1	Compare and contrast replication mechanisms used by viruses along with their cultivation, purification techniques. Compare and apply different separation techniques & use them in research work
CO-2	Identify various common and new emerging diseases of humans, different diagnostic techniques and various methods involved in infection control.
CO-3	Describe the mechanism of action of different antimicrobial agents and analyse the importance of appropriate drug therapy by learning the mechanisms of development of drug resistance.
CO-4	State the role of different types of vaccines in their prevention

	Course Description	Lectures
Unit I Emerging diseases	 Introduction to new emerging diseases and causative agents like MERS, SARS, Swine flu, COVID- 19, Nipah virus, Ebola virus. 	15h
	• Diagnosis, Treatment and preventive measures for MERS, SARS, COVID-19, Nipah virus, Ebola virus.	
	Malaria and Dengue Virus	

Unit II	Bacteriophage Life Cycle,	15h
Virology and		2011
Victores	 Regulation of phage gene expression. Animal viruses and plant (TMV)virus; 	
	• Virus purification and assays; Cytocidal infections and cell damage ,Viroids and Prions;	
	• Vaccine Subunit Vaccines -HSV, Peptide Vaccines, Attenuated Vaccines-Cholera, Vector Vaccines- Vaccinia virus,	
	Genetic Immunization	
Unit III	Discovery and Design of antimicrobial agents,	
Chemotherapeutic drugs	Classification of Antibacterial agents, Selective toxicity, MIC, MLC;	
	 Mode of action for: Beta lactam antibiotics: Penicillin, Cephalosporins 	
	Glycopeptides: Vancomycin Polypeptides: Bacitracin	
	• Injury to Plasma membrane: Polymyxin Inhibition of protein synthesis	
	Aminoglycoside, Tetracycline, Chloramphenicol,	
	 Macrolides and Erythromycin Inhibition of Nucleic acid synthesis Quinolones, Rifampicin, Metronidazole 	
	• Antimetabolites: Sulphonamides, Trimethoprim, 2- deoxy D Glucose.	
	 Antifungal drugs, Antiviral drugs Amantadine, Acyclovir, Remdesivir. 	
	• Drug Resistance: Mechanism, Origin and transmission of drug resistance; Use and misuse of antimicrobial agents.	
Unit IV Bio analytical techniques	Basic Principles of spectroscopy: Principle, instrumentation and applications of IR, NMR, atomic absorption and Mass spectroscopy, fluorimetry, ORD and CD.	15h
	Isotopes in Biology	
	 Detection Techniques of Radioactivity GM counter, Scintillationcounter, Autoradiography, Applications of tracer techniques in Biology. 	

1.	Principles and techniques in biochemistry and molecular biology (2010), Keith
	Wilson and John Walker, 7th edition, Cambridge University Press.
2.	Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic
	Publishers.
3.	Physical Biochemistry: principles and applications, 2nd edition (2009), David
	Sheehan, John Wiley & Sons Ltd.
4.	Mim's Medical Microbiology 5th edition.
5.	Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill.
6.	Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18 th
	edition. Medical Microbiology by Patrick Murray 5 th edition.
7.	Foundations in Microbiology by Talaro and Talaro Third edition W.C Brown
	Understanding Viruses by Teri Shors

Course Description	
Semester	V
Course Name	Paper III (Genomes and Molecular Biology)
Course Code	UBT5GMB
Credit	2.5
Hours	60 Hrs.

Cour	Course Objectives: After Completion of this course:		
•	Students will learn different techniques involved for the genetic engineering of		
	plants as well as Pros and cons of GM crops		
•	Students will get knowledge of animal genetic engineering and its		
	application for livestock improvements for human welfare		
•	Students will get insights of working principles of molecular biology techniques		
•	Students will be able to conclude prokaryotic gene editing and regulating		
	techniques.		

Course	Course Outcomes: After completion of the course students will be able to		
CO-1	Elaborate on the gene transfer methods in plants by physical, chemical methods as well as plasmid derived vector systems.		
CO-2	Summarize the animal transfection methods and applications of transgenic animals		
CO-3	Explain tools and techniques used in molecular biology		
СО-4	Discuss various gene editing methods and regulations of prokaryotic gene		

	Course Description	Hrs
Unit I Genetic Engineering of Plants	 Gene transfer methods in plants: Plant transformation with the Ti plasmid of <i>A. tumefaciens</i>, Ti plasmid derived vector system. Physical and Chemical methods of transferring genes to plants: electroporation, micro-projectile bombardment, liposome mediated, PEG and calcium phosphate mediated gene transfer. Viral Vectors for plant cells transformation brief introduction. 	113 15h
	GM Crops: BT Cotton, BT Brinjal,Golden Rice, Pros. and Cons. of these GM crops.	

Unit II Genetic Engineering of Animals	 Gene transfer methods in Animals: Transgenic mice- methodology- retroviral method, DNA microinjection, ES method, genetic manipulation with cre- loxP. Brief introduction of vectors for animal cells. Transgenic animal recombination system. Cloning livestock by nuclear transfer. Animal models 	15h
Unit III Tools in Molecular Biology	 Construction of genomic DNA libraries, cDNA libraries and chromosomal libraries. Recombinant selection and screening methods: genetic, immunochemical, Southern and Western analysis, nucleic acid hybridization, HART, HRT. Expression of cloned DNA molecules and maximization of expression. Locating genes on chromosomes: Chromosome walking and jumping. Maxam-Gilbert's method, Sanger's dideoxy method, Automated DNA sequencing, Pyro-sequencing 	15h
Unit IV Prokaryotic gene regulation and Gene editing	 Prokaryotic gene regulation: Lactose and Tryptophan operons- Gene organization and regulation. Human genome mapping and its implications in health and disease; RNAi, ZNF (Zinc finger nucleases), TALENS (Transcription Activator Like Effector Nucleases), CRISPER/Cas system (Clustered Regularly Interspersed Repeats) 	15h

1.	iGenetics A Molecular Approach 3rd Edition Peter J. Russell	
2.	Molecular Biotechnology-Principles and Applications of Recombinant	
	DNA Technology 4th Edition Glick B.R., Pasternak J.J., Patten C.L.	
3.	Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.	
4.	Biotechnology 3rd Edition S.S. Purohit.	
5.	Genomes 3rd Edition T.A. Brown.	
6.	Biotechnology B.D. Singh	
7.	Gene Cloning and DNA Analysis 6th Edition T.A. Brown.	
8.	Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)	

Course Description	
Semester	V
Course Name	Paper IV (Marine Biotechnology and Developmental
	Biology)
Course Code	UBT5MBI
Credit	2.5
Hours	60 Hrs.

Cour	Course Objectives: After Completion of this course:		
•	Students will learn methodological approaches that are currently being used for microbial bio- prospecting, with emphasis in the marine environment.		
•	Students will learn the development and utilization of marine-derived bioproducts and biomaterials, including applications in medicine, industry, and materials science.		
•	Students will get knowledge of developmental biology which includes stages, mechanisms and patterns of embryonic development.		
•	Students will get knowledge of plant developmental biology and stem cell biology.		

Course	Course Outcomes: After completion of the course students will be able to	
CO-1	Apply knowledge of marine ecosystems and the principles of biotechnology, the importance of biotechnology in exploring and conserving marine biodiversity	
CO-2	Identify and evaluate specific marine biotechnological applications, demonstrating their understanding of the real-world uses and implications of biotechnology in marine-related industries and research.	
CO-3	Elaborate the stages of animal development & mechanism of differentiation.	
СО-4	Discuss the features and stages of plant development with model organism & Stem cell biology	

	Course Description	Lectures
Unit I	Seawater composition and its properties.	15h
Introduction to Marine Biotechnology	 Classification of the marine environment. Characteristics of marine microorganisms. Specialized microorganisms: Extremophiles: barophiles, thermophiles, psychrophiles, halophiles actinomycetes, polyextremophiles and anaerobes. Marine viruses and Giruses, Giant bacteria, Marine algae and plants (seaweeds, sea grasses, mangrove plants). Microbial Bioprospecting in Marine Environments. 	
	Ocean acidification and its significance, Red tides	

Unit II Applications of Marine Biotechnology	 Marine Bioactive as Potential Nutraceuticals and functional food and Cosmetics. Seaweeds for removal of metal pollutants. GFP, RFP characteristics and their applications Green mussel adhesive protein Biomimetics, Algal biofuels Marine Extremozymes and their Significance. 	15h
	 Fishery by-products-Fish Meal, Fish Oils, Fish Silage, Fish gelatin, Fish calcium, 	
Unit III Developmental Biology	 Chitin & Chitosan, Hydroxyapatite. Overview of how the modern era of developmental biology emerged through multidisciplinary approaches. 	15h
	• Stages of development- zygote, blastula, gastrula, neurula cell fate & commitment – potency- concept of embryonic stem cells, differential gene expression, terminal differentiation, lineages of three germ layers, fate map.	
	 Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development Pattern formation- axis specification, positional identification (regional specification), Morphogenetic movements. 	
	• Model organisms in Developmental biology: Hydra, Zebra fish, <i>C. elegans</i> etc.	
Unit IV Plant Developmental Biology & Stem cell Biology	• Overview of Plant Development: Embryogenesis and early pattern formation in plants; Plant Meristem Organization and Differentiation- Organization of Shoot Apical Meristem (SAM); Organization of Root Apical Meristem (RAM); Phloem differentiation.	15h
	 Model organisms and experimental tools in cell and developmental plant biology: <i>Arabidopsis thaliana</i>. Definition, classification and source of stem cells; Stem cells and therapeutic cloning. 	

1.	Handbook of Fish and Marine Product Processing.
2.	Se-kwon Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
3.	Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)
4.	R. S. K. Barnes, R. N. Hughes(auth.)-An Introduction to Marine Ecology, Third Edition- Wiley-Blackwell (1999)
5.	Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)- Marine Bioactive Compounds_ Sources, Characterization and Applications- Springer US (2012)
6.	Developmental biology Barresi, Scott F. Gilbert

Course Description	
Semester	V
Course Name	Paper V: Applied Component (Biosafety)
Course Code	UBT5BIS
Credit	2.5
Hours	60 Hrs.

Cour	Course Objectives: After Completion of this course:		
•	Students will be acquainted with the fundamental concept of biosafety and regulations in Biotechnology laboratory.		
•	Students will be familiar with different competent authorities and its role in regulations of GMO and LMO.		
•	Students will understand how to detect potential contamination risks or products.		
•	Students will be able to develop the concepts of biosafety in Biotechnology.		

Course	Course Outcomes: After completion of the course students will be able to		
CO-1	Develop an understanding about Biosafety, Biological risk assessment and		
	Hazardous Characteristics of an Agent.		
CO-2	Explain an overview regarding regulatory biosafety guidelines and various		
	roles of competent authorities.		
CO-3	Apply Microbiological testing in pharmaceuticals & common microbial		
	contaminants.		
CO-4	Explain the concepts of biosafety in biotechnology and its regulations		

	Course Description	Lectures
Unit I Introduction to Biosafety	 Introduction, Biological Risk Assessment, Hazardous Characteristics of an Agent Genetically modified agent hazards; Cell cultures Hazardous Characteristics of Laboratory Procedures Potential Hazards Associated with Work Practices Safety Equipment and Facility Safeguards Pathogenic risk and management 	15h
Unit II Biosafety Guidelines and Regulation	 Biosafety guidelines integrated with Government of India; Definition of GMOs & LMOs; Regulations and Guidelines on Biosafety: Scope of Regulation, Competent Authorities, Roles of Institutional Biosafety Committee, RDAC, IBSC, RCGM, GEAC, SBCC, DLC etc. for GMO applications in food and 	15h

Unit III Detection and testing of contaminants	 agriculture; Environmental release of GMOs; Risk Analysis, Risk Assessment and Risk management. Microbial Contamination in food and pharma product; Some common microbial contaminants; Microbiological Assays for pharmaceutical products; Regulatory Microbiological testing in pharmaceuticals. 	15h
Unit IV Biosafety in Biotechnology	 Concepts on biosafety in Biotechnology, Regulating rDNA technology, Regulating food and food ingredients, Genetically engineered crops, Livestock Bioethics; Contemporary issues in Bioethics. Alteration of the Nutritional Content of Food, Controversy about the Labelling of Genetically Modified Foods. Concerns about the Impact of Genetically Modified Organisms on the Environment. 	15h

1.	Pharmaceutical Microbiology - Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
2.	Biosafety in Microbiological and Biomedical Laboratories - 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
3.	Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 4th edition ASM press
4.	Joshi, R.; Biosafety and Bioethics (Ed.) (2006), Isha Books, Delhi.
5.	Department of Biotechnology, Ministry of Science and Technology, Government of India; Revised guidelines for safety in biotechnology. Available from: <u>http://dbtbiosafety.nic.in/guideline/pdf/guidelines94.pdf.</u>

	SEMESTER V	
Course Code	Title	Credits
UBT5PR1	Practical of Cell biology+ Medical Microbiology &	3.0
	Instrumentation	
_	n and sterilization of different types of cell culture media nced Salt solutions	a i.e. RPMI
2. To isolate	lymphocytes from whole blood by gradient centrifugatio	n
3. Isolation a	nd culture of animal cell.	
4. To check c	ell viability by cell counting	
5. Demonstra	ation: Principle, working and applications of FTIR.	
6. Permanent slide of the cancer cells.		
7. MIC and MLC of any one antibiotic		
8. Antibiotic sensitivity test using agar cup method		
9. Antibiotic sensitivity test using paper disc method		
10. Antibiotic sensitivity test using ditch method.		
11. Synergistic Action of two drugs		
12. Preparation of TAB vaccine.		

SEMESTER V			
Course Code	Title	Credits	
UBT5PR2	Practical of Genomes and Molecular Biology + Marine	3.0	
	Biotechnology		
1. Transfor	rmation in <i>E.coli</i> .		
2. Conjuga	tion		
3. Replica	plate		
4. Genomie	4. Genomic DNA Extraction: Animal cells.		
5. Gradien	5. Gradient plate technique		
6. Formula	6. Formulation of Fish Feed using Ingredients from Plant Sources.		
7. DPPH as	7. DPPH assay for antioxidant extracted from marine algae		
8. Extraction	8. Extraction of carotenoids from marine algae/Bacteria/Fungi.		
9. Extraction of Gelatin from marine sources.			
10. Estimati	10. Estimation of gelatin.		
11. Extracti	11. Extraction and estimation of Collagen from marine sources.		
12. Study of	12. Study of permanent slides/photographs related to plant development.		

	SEMESTER V	
Course Code	Title	Credits
UBT5PR3	Practicals of Applied Component: Biosafety	2.0
1. Validatio	n of autoclave	
2. Vitamin H	312 bioassay	
3. To check	sterility of injectable.	
4. Testing for adulterants in food.		
5. Operation and safety precautions: Fire, handling of chemicals etc.		
6. Sterile testing methods for pharmaceutical products.		
7. Isolation of pathogenic bacteria from fomites on operating room of		
pharmaceutical industry/ Packaging material of pharmaceutical products etc.		
8. A case study on clinical trials of drugs in India with emphasis on ethical issues.		
9. Case study on medical errors and negligence.		
10. Case stud	10. Case study on handling and disposal of laboratory waste.	
11. Effects of store as and pressessing on the putritive value of cortain foods		

11. Effects of storage and processing on the nutritive value of certain foods.

Course Description-		
Semester	V	
Course Name	SEC3 – Hydroponics	
Course Code	UBT5HDP	
Credit	02	

Course Objectives- Course Objectives: After Completion of this course:

Students will be able to explain basics concepts and science behind hydroponics

Course Outcomes: After completion of this course students will be able to:

- Design hydroponic system suitable for different types of plants
- Evaluate the cost effectiveness and potential profitability of hydroponics

Units	Course Description	Hrs.
Unit I Introduction to Hydroponic	 Hydroponic production – Basic principles, Historical Perspectives, Advantages/Disadvantages, Types of Hydroponics Systems Growing Substrates Plant Nutrition, Nutrient Solution and System Monitoring: EC, pH, Aerial Environmental Factors and Plant Growth: Light, Temperature, CO₂, RH, Cooling Systems Organic hydroponics 	15
Unit II Management of Hydroponics	 Design of hydroponic growing system Management of commercial hydroponic farming Hydroponics Systems in leafy greens: Lettuce Hydroponics Systems in vine crops: tomatoes 	15

- 1. J. Benton Jones, Jr: Complete Guide for Growing Plants Hydroponically CRC Press.
- 2.
- 3. Hydroponics Farming Technology- A Skilling Program Training Manual Department of Agriculture Ministry of Agriculture and Forests Royal Government of Bhutan March 2021

SEMESTER -VI

Course Description		
Semester	VI	
Course Name	Paper I (Biochemistry)	
Course Code	UBT6BIC	
Credit	2.5	
Hours	60 Hrs.	

Cour	Course Objectives: After Completion of this course:				
•	Understand the quaternary protein ligand interactions, protein folding and				
	degradation.				
•	Correlate biosynthetic pathways and regulation				
•	Learn the various functioning of endocrine gland secretions with their associated disorders.				

Cour	Course Outcomes: After completion of the course students will be able to :			
C01	Justify protein structure and protein-ligand interactions and Apply different protein purification techniques.			
CO2	Analyze the metabolism of carbohydrates and fates of various intermediate and end product.			
CO3	Classify hormones with their functions.			
CO4	Identify hormone associated disorders.			

	Course Description	Hrs.
Unit-I Protein Biochemistry	Quaternary structure of proteins with special reference to Hemoglobin, cooperative oxygen binding and concerted and sequential models for allosteric proteins.	15h
	Protein denaturation, Folding and role of Molecular Chaperons, Protein degradation basic concept.	
	Protein Purification techniques: Principle and applications of Dialysis, salting and salting- out gel filtration, ion exchange, FPLC, affinity and hydrophobic interaction Chromatography.	
Unit-II Metabolism	Carbohydrate biosynthesis and its regulation: Peptidoglycan in Bacteria; Starch and sucrose in Plants, Glycogen in Animals, inborn errors of glycogen metabolism. Biosynthesis and regulation of Cholesterol, Atherosclerosis.	15h

Unit-III Endocrinology -I	Classification of hormones: Mechanism of action of group I and II hormones. Hormones of Hypothalamus and pituitary gland Anterior Pituitary Hormones: GH Posterior Pituitary Hormones: Oxytocin and Vasopressin Thyroid hormones: Biosynthesis, Biochemical and physiological functions, disorders and thyroid function tests. Chemistry, Biochemical and physiological functions of androgens, estrogens and progesterone. Hormonal regulation of menstrual cycle, Hormonal contraception.	15h
Unit-IV Endocrinology -II	Hormones of Adrenal Cortex: Glucocorticoids and Mineralo- corticosteroids- Biochemical and physiological functions and disorders. Hormones of Adrenal Medulla: Synthesis, Biochemical and physiological functions and disorders of Catecholamine. Hormones of pancreas: structure, biochemical and physiological functions and disorders: Insulin and glucagon. Diabetes mellitus. Recombinant Insulin.	15h

1.	Lehninger, principles of biochemistry, 7th edition (2005), David Nelson and Michael Cox W.H. Freeman and Company, New York.	
2.	Biochemistry, 4th edition (2010), Voet and Voet, John Wiley and sons, USA	
3.	Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.	
4.	Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd 5. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers	

Course Description		
Semester	VI	
Course Name	Paper II (Industrial Microbiology)	
Course Code	UBT6IMI	
Credit	2.5	
Hours	60 Hrs.	

Cour	Course Objectives: After Completion of this course:		
•	Students will learn the production outline of various dairy products.		
•	Students will learn the different modes of fermentation.		
•	Learn outline of Down-streaming processing and understand various methods applied in solvent recovery, cell disruption & separation.		
•	Students will understand the Standard operating procedures, GMP and QA		
	and QC.		

Cour	Course Outcomes: After completion of the course students will be able to :		
C01	Explain different productions in dairy industry		
CO2	Elaborate on bacterial and fungal inoculum development		
CO3	Formulate protocol of Down-streaming processing and understand various methods applied in solvent recovery, cell disruption & separation.		
C04	Design requirements of QA-QC along with various documentation & Audit reports		

At the end of the course, students will be able to:

	Course Description	Hrs
Unit-I Dairy Technology		
	Dairy technology Preservation methods, Pasteurization Starter Cultures	
	Fermented products-Production process and spoilage of Cheese, Swiss and Cheddar, Butter, Yogurt and	
	Buttermilk.	
Unit-II Fermentation process	ion inoculum development with one example each Scale up, Scale	
	Production of: Streptomycin, Protease, Glutamic acid, Lysine, ethanol production Semi-synthetic Penicillin, Wine Mushroom cultivation	
	Biotransformation	

Unit-III Down- stream Processing (DSP)	Introduction of DSP, Foam separation, Types of Precipitation, Filtration, Centrifugation, Chromatography in DSP Cell disruption- physical and chemical methods; Solvent recovery, Membrane processes, Drying, Crystallization. Whole broth processing	15h
Unit-IV QA-QC	 -QC Concept of GMP Requirements of GMP implementation, Documentation of GMP practices, Regulatory certification of GMP. Quality Control (QC): Concept of QC, Requirements for implementing QC, QA concepts: Concept of QA, Requirements for implementing. Calibration records (QA-QC), Validation of methods; Documentation of results; Audits and Audit reports. 	

nerer	chees.
1	Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc
	New York, 2nd edition
2	Fundamentals of Microbiology by Frobisher, 9th Ed
3	Microbial Technology Peppler,H.J and Perlman,D 2nd Academic Press Practicals
4	Industrial Microbiology Prescott and Dunn CBS publishers
5	Industrial microbiology by Casida
6	Industrial Microbiology by A.H. Patel
7	Dairy technology by Yadav and Grower
8	Fermentation technology by Stanbury and Whitaker
9	Pharmaceutical Microbiology by Hugo and Russel
L	

Course Description		
Semester	VI	
Course Name	Paper III (Pharmacology and Neurochemistry)	
Course Code	UBT6PNE	
Credit	2.5	
Hours	60 Hrs.	

Cour	Course Objectives: After Completion of this course: Students will learn		
•	The mechanism of drug action and its dose–response relationship along with the drug delivery and action in the body.		
•	In depth knowledge on toxic substances and poisons ie. Toxicology.		
•	The properties of cells that make up the nervous system including the propagation of electrical signals used for cellular communication.		

Cour	Course Outcomes: After completion of the course students will be able to :		
C01	Summarize the basic concept of mechanism of drug action.		
CO2	Elaborate drugs and their poisonous effect if the administered for longer period of time.		
CO3	Outline the basic concept of toxicology and their types.		
CO4	Explain the basic neurochemistry and action of specific drugs on the Central Nervous System.		

	Course Description	Hrs
Unit-I General principles of Pharmacology	Mechanism of drug action; drug receptors and biological responses; second-messenger systems, the chemistry of drug-receptor binding;dose-response relationship: therapeutic index; ED, LD; Potency and Intrinsic Activity; Drug antagonism Definition: Drugs, Small molecules, Large Molecules/ Biologics and biosimilars with example. Similarities and Differences: Small molecules versus generics, Biologics versus Biosimilars.	15h

Unit-II Drug Absorption Distribution Metabolism and Excretion	 Absorption of drugs from the alimentary tract; absorption of drugs from lungs; skin; absorption of drugs after parenteral administration factors influencing drug distribution; binding of drugs to plasma proteins; Physiological barriers to drug distribution. Drug Metabolism: sites of drug metabolism and phases of Metabolism. Drug Excretion: Renal and Non-renal Drug Elimination. 	15h
Unit-III Basic Toxicology and Regulatory Toxicology	 Background Definitions; Causation: degrees of certainty Classification; Causes Allergy in response to drugs Effects of prolonged administration: chronic organ toxicity; Adverse effects on reproduction. Poisons: Deliberate and accidental self-poisoning Principles of treatment Poison-specific measures General measures; Specific poisonings: cyanide, methanol, hydrocarbons, volatile solvents, heavy metals; herbicides and pesticides; biological substance (overdose of medicinal drugs is dealt with under individual agents); Incapacitating agents: drugs used for torture; Nonmedical use of drugs. 	15h
Unit-IV Neurochemist ry	 Anatomy and functioning of the brain; Neuronal pathways (Introduction); Propagation of nerve impulses; Neuronal excitation and inhibition; Synapses and gap junctions; Action of Neurotoxins and neurotransmitters. Drugs affecting the Central Nervous System: -Agents Affecting Neuromuscular transmission, Sedative-hypnotic and Anxiolytic drugs, drugs Used in Neurodegenerative Disorders, Antiepileptic Drugs. 	15h

1	Modern Pharmacology with clinical Applications Craig,C.R, Stitzel,R.E 5th edition.
2	Casarett & Doull's Toxicology - The Basic Science of Poisons (6th Edition).
3	Clinical Pharmacology Bennet, PN, Brown,M.J, Sharma,P 11th edition.
4	Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
5	Biochemistry Metzler, D.E Elsevier
6	Gerard Marshall Raj Ramasamy Raveendran: Introduction to Basics of Pharmacology and Toxicology, Volume 1: General and Molecular Pharmacology: Principles of Drug Action springer.

Course Description		
Semester	VI	
Course Name	Paper IV- (Environmental Biotechnology)	
Course Code	UBT6ENB	
Credit	2.5	
Hours	60 Hrs.	

Cour	Course Objectives: After Completion of this course: Students will learn		
٠	The concepts of solar energy, wind power, geothermal energy and hydropower,		
	biomass energy, Biogas technology and Biofuels.		
•	The techniques and strategies of Industrial effluent treatment and waste water management		
•	Exposed to the processes which are currently associated and taking place in industry along with their consequences on generation of hazardous waste.		

Cour	Course Outcomes: After completion of the course students will be able to :			
C01	Apply renewable energy sources for both domestics and industrial application.			
CO2	Explain the current applications of biotechnology to environmental quality			
	evaluation, monitoring and remediation of contaminated environments.			
CO3	Identify the most common techniques for preventing, minimizing, recycling,			
	disposing and treatment of waste and their application on site remediation.			
C04	Discuss various treatment methodologies for hazardous waste management.			

	Course Description	Hrs
Unit-I	Renewable and Non-renewable resources: Natural	15h
Natural Resources	resources and associated problems: Forest resource, Water resource, mineral resource, food resource, Energy resource and Land resource.	
and Disaster Management	Concept of sustainable development. Strategy for sustainable development. Ecotourism.	
	Disaster Management: Components of Disaster	
	Management, Government's Role in Disaster Management through Control of Information,	
	Actors in Disaster Management, Organizing Relief measures at National and Local Level.	
	Epidemiological Issues: Fluorosis, Arsenocosis, Goitre, Dengue	

Unit-II Industrial Effluent Treatment	Biological processes for industrial effluent treatment, Aerobic biological treatment- activated sludge process, CASP, advanced activated sludge processes (any two) Biological filters, RBC, FBR Anaerobic biological treatment- contact digesters, packed bed reactors, anaerobic baffled digesters, UASB Biodegradation of xenobiotics- persistent compounds, chemical properties influencing biodegradability, microorganisms in biodegradation.	15h
Unit-III Solid waste treatment and Biosensors	Use of immobilized enzymes or microbial cells for treatment. Solid waste treatment: Green Manure, Bio- compost making methods Types and methods of vermicomposting, field applications.	15h
	Pollution indicators Biosensors: Introduction; General configuration of biosensor; Generations of biosensors; Basic principle and instrumentation of different biosensors: electrochemical, optical, acoustic, piezoelectric, and calorimetric biosensors; Biological recognition systems: enzyme, antibody, nucleic acid, cell, and tissue	
Unit-IV Hazardous Waste Management	Biodegradation of waste from: Tanning industry Petroleum industry Paper & pulp industry Dairy industry Distillery Dye industry Antibiotic industry Removal of oil spillage & grease deposits	15h

1.	Environmental Biotechnology Alan Scragg Oxford University press
2	Environmental Biotechnology M.H. Fulekar Oxford & IBH Publishing Co. Pvt. Ltd.
3	Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International
4	Environmental Biotechnology (Industrial pollution management) S.N. Jogdand, Himalaya Publishing House

Course Description		
Semester	VI	
Course Name	Paper V (Applied Component: Agribiotechnology)	
Course Code	UBT6ABT	
Credit	2.5	
Hours	60 Hrs.	

Cour	Course Objectives: After Completion of this course:		
•	Students will be exposed to technology and the techniques that can be used to		
	improve the efficiency of agricultural operations like greenhouse technology.		
•	Students will develop knowledge crop improvement methods.		
٠	They will gain the knowledge of different markers used in plant breeding		
	techniques		
•	Students will gain concept of bio-fertilizers, Symbiotic-Non symbiotic		
	nitrogen fixation in leguminous plant, assimilation of phosphorus and		
	biopesticides.		

Cour	Course Outcomes: After completion of the course students will be able to :		
C01	Apply greenhouse technology.		
CO2	Explain the methods of plant improvement and use of microbes as bio-		
	fertilizers, PGPRs, bio-pesticides, Microbial Inoculants		
CO3	Apply Inoculant formulations, biocontrol and Polymicrobial Inoculant		
	Formulations.		
C04	Discuss genetic and molecular markers in plant breeding.		

	Course Description	Hrs
Unit-I Precision Agriculture and Agriculture	Introduction to Agriculture and agriculture systems Greenhouse Technology Types of greenhouse importance, functions and features of greenhouse, Design criteria and calculations.	15h
system	Construction material, covering material and its characteristics growing media, greenhouse irrigation system. Nutrient management.	
	Greenhouse heating, cooling and shedding and ventilation system, Computer controlled environment. Phytotrons, fertigation and roof system.	
	Precision Cultivation- Tools, sensors for information acquisition.	

Unit-II Biotechnology for Crop Improvement	 Production of virus free plants- shoot meristem culture, micro propagation, production of Haploid plants, somatic hybridization and cybridization, synthetic seeds. Molecular Pharming, edible vaccines. Development of salt resistant, fungal resistant and herbicide resistant plants by genetic engineering. Hydroponics: an overview of techniques and media used. 	15h
Unit-III Molecular Markers in Plant Breeding	Genetic markers in plant breeding- classical markers, DNA markers (RFLP, RAPD, AFLP, SSR, SNP) Application of Molecular Markers to Plant Breeding quantitative trait locus (QTL) mapping Plant DNA Barcoding- Barcoding Markers (matK, rbcl, ITS, tmH- psbA), steps, recent advances, Benefits, Limitations	15h
Unit-IV Bio- fertilizers and Bio-pesticides	Bio-fertilizer:Nitrogen-fixingRhizobacteriaPlantGrowthPromotingMicroorganismsPhosphate-SolubilizingMicrobes(PSM).PlantGrowthPromotion by FungiMycorrhizaeArbuscularMycorrhizaeEctomycorrhizae.MicrobialInoculantsInocula,Carriers, andApplications,MonocultureandCo-cultureInoculantFormulationsBiocontrol, PolymicrobialInoculantFormulationsBiocontrol, Formulationsgin s e ct vir u s e s and entomopathogenic fungi(characteristics, physiology, mechanism of action and application).applicationdiatabacteristics	15h

Keieren	ces:
1.	M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
2	P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation Springer Singapore (2016)
3	S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech,2013
4	Travis R. Glare, Maria E. Moran-Diez - Microbial-Based Biopesticides_Methods and Protocols (2016, Humana Press)
5	Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_ Prospects for the 21st Century-Academic Press (2011
6	Bhojwani, S.S. and Razdan 2004 Plant Tissue Culture and Practice.
7	Slater, A., Scott, N.W. & Fowler, M.R. 2008 Plant Biotechnology: The Genetic Manipulation of Plants, Oxford University Press.
8	Advanced Biotechnology by R C Dubey S Chand publication.

	SEMESTER VI	
Course Code	Title	Credits
UBT6PR1	Practical of Biochemistry + Industrial Microbiology	3.0
1. Protein sep	paration by salting out.	
3. Separation	ation of dialysis of components from a mixture using Size exclusion graphy.(Demonstration)	
4. Estimation	of Milk protein-Pynes method	
5. Microbial a	analysis of Milk by MBRT and RRT	
6. Phosphata	se test in Milk	
7. DMC of mil	lk sample	
8. Isolation of	f Normal flora from Milk and curd	
9. Wine prod	uction and testing.	
10. Determina	tion of blood glucose levels for detection of diabetes melli	tus.
11. Determina	tion of serum cholesterol (total, HDL and LDL ratio)	
12. Estimation	n of Glycogen	
13. Identificati	ion questions based on hormones (Case study).	

	SEMESTER VI		
Course Code	Title	Credits	
UBT6PR2	Practicals of Pharmacology - Neurochemistry	3.0	
	and Environmental Biotechnology and		
	Project Work		
1. LD 50, ED 50 evaluation using suitable models e.g. <i>Daphnia</i> , Chironomus larvae.			
2. Study the effect of heavy metals on the growth of bacteria.			
3. Determina	tion of Total Solids from an effluent sample.		
4. Study of physico-chemical (pH, colour, turbidity, BOD, COD) parameters of any			
one indust	rial effluent sample.		
5. Estimation	Estimation of chromium from Effluents (Demonstration)		
6. Visit to ET	Visit to ETP/ CETP/Vermi-compost unit.		

7. Short-term Project.

	SEMESTER VI		
Course Code	Title	Credits	
UBT6PR3	Practical of Applied component: Agribiotechnology	2.0	
1. Isolation of Rhiz	obium.		
2. Isolation of Azot	obacter.		
3. Isolation of Phos	sphate solubilising bacteria		
 Rapid screening salinity NaCl). 	F		
5. To estimate the	Proline content in salt stressed plants.		
6. Preparation of s	ynthetic seeds.		
7. Micropropagatio	on of suitable plant species.		
8. Preparation of b	vio-fertilizer.		
9. To observe effect	To observe effect of bio-fertilizer on plant growth.		
10. Preparation of h	ydroponic solution and hydroponic culture. (I	Demonstration)	
11. Educational visi	t/ field visit report.		
