

।। विद्या विनयेन शोभते।। Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR

ARTS, COMMERCE AND SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC (3rd Cycle - CGPA 3.61)
'College with Potential for Excellence' Status Awarded by UGC
'Best College Award' by University of Mumbai

Academic Year 2023-24

Department of Chemistry

F. Y. B. Sc.

Course Outcomes (as per the NEP 2020)

a) F. Y. B. Sc. SEMESTER-I

F.Y.B.Sc. General Cl		hemistry (Paper-I)	Sem-I		
Course Code: USC1GCH1			Course Coordinator: Dr. V. S. Kamble, Dr. D. K. Patil		
COs.	After completing the	Bloom Taxonomy Level (BTL)			
CO1	Recall thermodynamics terms, the first law of thermodynamics and terms like normality, molarity.				
CO2	Solve the Numerical pro	Apply			
CO3	Classify the elements according to electronic configuration and explain details of periodic trends and atomic structure.			Understand	
CO 4	Explain the name, be compounds.	oonding , st	ructure and bond	fission of organic	Evaluating

F.Y.B.Sc. General Ch			nemistry (Paper-II)	Sem-l	[
Course Code: USC1GCH2 Course Coordinator: Dr. V. S. Kamble, Pawara					, Dr. J. M.
COs. No.	After completing the course, students will be able to:				
CO 1	Explain enantiomer, optical activity, diastereomers, projection formulas, isomerism.				
CO 2	Outline the metallic electronegativity, Ano elements.	Understand			
CO 3	Explain the reactivity of group 1 and group 2 elements and the effects of Oxides of carbon, sulphur and nitrogen on the environment.			Understand	
CO 4	Define surface tension reaction.	, Viscosity,	Refractive index of	Liquid, Order of	Remember

	F.Y.B.Sc. General Cl		hemistry Practical	Sem-I			
Course Code: USC1CHP			Course Coordinator: Dr. V. S. Kamble, Dr. D. K. Patil				
COs. No.	After completing the	After completing the course, students will be able to:					
CO 1	Find exact concentrati	Find exact concentration of the solutions and enthalpy of dissolution.					
CO 2	Apply chemical kinetics	Apply					
CO 3	Find the normality of acids and bases and purity of samples gravimetrically.				Remember		
CO 4	Apply Thin Layer Chr Sublimation methods for	0 1	, , , ,	, Recrystallization,	Apply		

	F.Y.B.Sc. Indian Know		vledge System (IKS)	Sem-I		
Course Code: UIKS1CAI			Course Coordinato	r: Dr. J. G. Pargao Chilate	kar, Dr. S. M.	
COs.	After completing cour	After completing course, Students will able to				
CO 1	Explain the ancient Ind	Explain the ancient Indian Science and Technology.				
CO 2	Apply the knowledge Charaka Samhita.	Apply the knowledge of Rasayan Shastra used during ancient period and Charaka Samhita.			Apply	
CO 3	Tell the history of Meta	Tell the history of Metals and Metallurgy in Ancient India.			Remember	
CO 4	Explain the knowledge	of extraction	and smelting of meta	lls in ancient India.	Understand	

	F.Y.B.Sc.	Chemistry in Everyday Life-I(OE)		Sem-I	
(Course Code: UOE1CEL1		Course Coordinator: Dr. V. D. Patil		
COs.	After completing course, Students will able to Bloom Taxono Level (BTL)				
CO1	Student understand	Remember			
CO2	Analyse the connect	Analyse			
CO3	Describe the impact of chemistry in areas of human activity			Describe	
CO 4	Find the various che	micals used in the	ne daily human life		Find

F.Y.B.Sc.		Techniques in Environmental Analysis-I (SEC)		Sem-I		
Course Code: USEC1TEA			Dr. S. N. Vajekar, Dr. J. G. orgarokar			
COs.	After completi	After completing course, Students will able to				
CO1	_	Categorise the various parameters for determining the water quality such as alkalinity, hardness, total dissolved solids etc.				
CO2	_ · · ·	Apply knowledge of basic water chemistry to solve problems associated with water/ waste-water treatment and water quality.			Apply	
CO3	Understand var	Understand various water treatment processes.			Understand	
CO4	Apply the basic	practical knowledge	for sample of water anal	yses.	Apply	

F.Y.B.Sc. Techniques in		-	Environmental Analysis-I (SEC) Practical		Sem-I	
Course Code: USEC1TEP			Course Coordinator: Dr. Pargar	•	ar, Dr. J. G.	
COs. No.	After complet	After completing the course, students will be able to:				
CO1	Find the p ^H , A	Find the p ^H , Acidity, Alkalinity of the given water samples.				
CO2	Analyse the sol	Analyse the solid pollutant present in the water samples.			Analysing	
CO3	Determine the t	otal hardness and pur	ity of the given water sample	S.	Evaluating	

	F.Y.B.Sc.	Good Labor	ratory Practices-I (VSC)	S	em-I
C	Course Code: UVSC1GLP		Course Coordinator:	Dr. B. D. Ag	hav
COs. No.	After completing th	Bloom Taxonomy Level (BTL)			
CO1	Apply practical sk laboratory practices		ee courses with the unde	erstanding of	Apply
CO2	Understand the difference	Understand the different aspects and laboratory techniques in Chemistry			
CO3	Make use of safety n	neasures while	working in the laboratory	<i>7</i> .	Apply

a) F.Y.B.Sc. SEMESTER-II

	F.Y.B.Sc. General C		hemistry (Paper-III)	Sem-II	
C	Course Code: USC2G	CH3	Course Coordinator:	Dr.V.S.Kamble,	Dr.D.K.Patil
COs. No.	After completing the course, students will be able to:				
CO 1	Explain deviations f nanotechnology with	Understand			
CO 2	Define the equilibrium of thermodynamics.	Define the equilibrium constant, Le-Chatelier Principle and the second law of thermodynamics.			
CO 3	Discuss basic terms of co-ordination chemistry, qualitative analysis and acid-base theories			Understand	
CO 4	Identify the products of	reactions of	alkanes, alkenes and al	kynes.	Apply

F.Y.B.Sc. General Ch		nemistry (Paper-IV)	Sem-l	II	
C	Course Code: USC2GCH4 Course Coordinator: Dr.J.M.P			awara	
COs. No.	After completing the	Bloom Taxonomy Level (BTL)			
CO 1	Identify the shapes of and the oxidation num	Apply			
CO 2	Explain Law of crystallography, Different types of interaction of electromagnetic radiation with matter, Degree of ionization and Henderson equation for acidic and basic buffers.				Understand
CO 3	Classify between aromatic, anti-aromatic, and non-aromatic compounds.				Understand
CO 4	Write the mechanism o	f the Electro	philic aromatic substit	ution reaction.	Apply

F.Y.B.Sc. General Cl		Chemistry Practical	Sem-II			
(Course Code: USC2CHP Course Coordinator: Dr.J.M.Pawara,			Dr.D.K.Patil		
COs. No.	After completing the	Bloom Taxonomy Level (BTL)				
CO 1	Apply chemical kineti	Apply				
CO 2	Make use of colorimete	Make use of colorimeter and pH meter.				
CO 3	Identify organic compound containing C,H (O) N, S, X elements.				Apply	
CO 4	Identify cations and a percentage of metal pre		•	f compounds and	Apply	

	F.Y.B.Sc.	Chemistry in E	veryday Life-II (OE)	Sem-I	I	
(Course Code: UOI	E2CEL2	Course Coordinator:	Dr.J.M.Pawara,	Dr.D.K.Patil	
COs. No.	After completing	After completing the course, students will be able to:				
CO1	Know the various	Know the various compounds used in the everyday life.				
CO2	Analyse the role of daily life.	Analyse the role of chemistry in the different compounds utilised in the laily life.			Analyse	
CO3	Understand the imp	portance of chem	istry in the everyday li	fe	Understand	

F.Y.B.Sc.		Techniques in Environmental Analysis-II (SEC)		Se	Sem-II	
(Course Code: USEC2T	`EA	Course Coo	rdinator: Dr.I	D.K.Patil	
COs. No.	After completing the course, students will be able to:				Bloom Taxonomy Level (BTL)	
CO1	Understanding the sour	Understand				
CO2	Study the soil pollution to understand the various health impacts.				Understand	
CO3	List the various control measure of soil pollution.			Analysis		
CO4	Determine the quality of	Determine the quality of soil of the surrounding.				

F.Y.B.Sc.		Techniques in Environmental Analysis-II (SEC) Practical		Sem-II	
Co	Course Code: USEC2TEP Course Coordinator: Dr.D.K				K.Patil
COs. No.	After completing the	Bloom Taxonomy Level (BTL)			
CO1	Identify the quality of	Apply			
CO2	Develop the environmental control plan for environment pollution problem.				Apply
CO3	Classify the various samples of soil according to their purity.			Understanding	
CO4	Discover the various of	components	of soil.		Analyse

F.Y.B.Sc.		Good Laboratory Practices –II (VSC)		Sem-II	
Course Code: UVSC2GLP			Course Coordina	tor: Dr.B.D.A	ghav
COs. No.	After completing the course, students will be able to:				Bloom Taxonomy Level (BTL)
CO1	Apply the skills of laboratory techniques in performing laboratory work.			itory work.	Applying
CO2	Make use of safety mea	sures while	working in the laboratory.		Applying

F.Y.B.Sc.		Min	Minor Chemistry-I		Sem-II	
Course Code: USC2CHM			Course Coordi	nator:	Dr.J.M.Pawara	
COs. No.	After completing the course, students will be able to:			Bloom Taxonomy Level (BTL)		
CO1	Explain the study chemical equilibrium				Understand	
CO2	Explain the basics of acids and bases.			Understand		
CO3	Understand the fundamentals of chemistry		mistry		Understand	

F.Y.B.Sc. Min		Minor C	Chemistry-I Practical		Sem-II	
Course Code: USC2CHMP			Course Coordinator: Dr.J.M.Pawara			
COs. No.	After completing the	ents will be able to:		Bloom Taxonomy Level (BTL)		
CO1	prepare solutions of different Molarity/Normality.			Apply		
CO2	determine quality of substance.			Analyse		
CO3	perform the estimation of fruit juices, shampoos etc.		Analyse			
CO4	Separate the mixtures l	y Chromato	graphy.		Analyse	

Janardan Bhagat Shikshan Prasarak Sanstha's Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous) Re-accredited 'A+' Grade by NAAC (CGPA 3.61, 3rd Cycle) 'College with Potential for Excellence' Status Awarded by UGC, 'Best College Award' by University of Mumbai DEPARTMENT OF CHEMISTRY Course Outcomes (COs) S. Y. B.Sc. (Sem III)

Name of the Programme: BSc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Class: S.Y.B.Sc. Subject:	Course: Paper – I Course Code: USC3CH1	Course Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to:	Bloom Taxonomy Level(BLT)
CO1	Illustrate the equation of Gibbs free energy, Chemical potential, Transport number and degree of Ionization.	Level 2
CO2	Explain different types of ionic crystals and hybridizations.	Level 2
CO3	Construct the molecular orbital diagram of homonuclear diatomic molecules.	Level 3
CO4	Compare the different properties, reactions and reactivity of alkyl/aryl/halides/organometallic compounds/alcohol, Phenol and epoxide.	Level 2

Name of the	Programme Coordinator: Dr. J.S.Thakur	Head of the
Programme: BSc.		Department:
Class: S.Y.B.Sc.		Prof.
		B.V.Jadhav
Subject :	Course: Paper – II	Course
	Course Code: USC3CH2	Coordinator:
		Dr. V.D. Patil
	After completing the Course, Students will able to:	Bloom
		Taxonomy
		Level(BLT)
CO1	Explain complex chemical reactions, Collision and activated	Level 2
	complex theory, effect of temperature on Arrhenius equation,	
	thermodynamics of ideal solutions.	
CO2	Summarize the chemistry of Boron, Silicon and Germanium	Level 2
	compounds.	
CO3	Recall the facts and basic concepts like distillation of solution,	Level 1
	Haber process and role of active methylene compounds.	
CO4	Construct the names and methods of preparation of carbonyl group	Level 3
	compounds.	

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Subject : Analytical	Course: Paper – III	Course
Chemistry	Course Code: USC3CH3	Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to :	Bloom Taxonomy Level(BLT)
CO1	Classify analytical methods and errors in analysis.	Level 2
CO2	Outline the methods of calibration of tools used and preparations for titrimetric analysis.	Level 1
CO3	Explain the principles of titrimetric analysis and UV-Visible spectroscopy.	Level 2
CO4	Apply statistical methods to treat the analytical data.	Level 3

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Subject :	Course: Practical	Course
	Course Code: USC3CHP	Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to:	Bloom Taxonomy Level(BLT)
CO1	Determination of various constants such as solubility products, dissociation constant, rate constant based on physical principles.	Level 5
CO2	Identify the ions in inorganic salts.	Level 2
CO3	Demonstrate the effectiveness of crystallization as a separation technique.	Level 3
CO4	Infer the obtained results effectively presentation.	Level 2

Head Department of Chemistry

Principal
Changu Kana Thakur
Arts, Commerce & Science College, New Panvel

Janardan Bhagat Shikshan Prasarak Sanstha's Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous) Re-accredited 'A+' Grade by NAAC (CGPA 3.61, 3rd Cycle)

'College with Potential for Excellence' Status Awarded by UGC,
'Best College Award' by University of Mumbai
DEPARTMENT OF CHEMISTRY

Course Outcomes (COs) S.Y. B.Sc. (Sem IV)

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department: Prof. B.V.Jadhav
Subject :	Course: Paper - I Course Code: USC4CH1	Course Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to:	Bloom Taxonomy Level(BLT)
CO1	Explain thermodynamics properties, equilibrium constant and different types of electrode.	Level 2
CO2	Illustrate Gibb's Phase rule, Phase diagram of one and two component system with examples.	Level 2
CO3	List the properties of transition metal compounds and different types of isomers in coordination compounds.	Level 1
CO4	Compare properties, acidity, preparations, reactions, nucleophilicity of acyl substituents of carboxylic acid and stereochemistry.	Level 4

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Subject :	Course: Paper – II Course Code: USC4CH2	Course Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to :	Bloom Taxonomy Level(BLT)
CO1	Explain law of crystallography, types of crystal, Interplanar distance in lattice, types of catalysis, Mechanisms and Kinetics of catalyst.	Level 2
CO2	explain the concept of hydration of cations and anions with respect to effect of charge and radius.	Level 2
CO3	Identify the hazardous effect of air pollutant like sulphuric acid, nitric acid and phosphoric acid	Level 3
CO4	Outline the synthesis ,reaction of amines and heterocyclic compounds like Furan, Pyrrole, Thiophene.	Level 2

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Subject : Analytical Chemistry	Course: Paper – III Course Code: USC4CH3	Course Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to :	Bloom Taxonomy Level(BLT)
CO1	Classify various separation methods based on their principles.	Level 2
CO2	Discuss the principles, construction and working of instrumental techniques based on the electrochemical properties of the analytes.	Level 2
CO3	Describe chemical methods of analysis and their suitable parameters.	Level 2
CO4	Apply the analytical methods to determine the physico chemical of environmental analysis.	Level 3

Name of the Programme: BSc. Class: S.Y.B.Sc.	Programme Coordinator: Dr. J.S.Thakur	Head of the Department : Prof. B.V.Jadhav
Subject :	Course: Practical Course Code: USC4CHP	Course Coordinator: Dr. V.D. Patil
	After completing the Course, Students will able to:	Bloom Taxonomy Level(BLT)
CO1	Find emf, amount of acid, acid strength potentiometrically.	Level 1
CO2	Compare the strength of HCl and H ₂ SO ₄ by kinetically.	Level 2
CO3	Calculate the amount from given sample by conductometrically and gravimetrically.	Level 4
CO4	Analyze qualitatively bifunctional organic compounds.	Level 4

HeadDepartment of Chemistry

Principal
Changu Kana Thakur
Arts, Commerce & Science College,
New Panvel

Course Outcomes

T.Y. B.Sc. Chemistry (Paper I)

T.Y.B.Sc.		T.Y.B.Sc. Chemistry Paper No. I (Physical Chemistry)		Sem-V		
	Course Coordinator: Dr. S.S. Pa Kamble					
COs.	After completing the course, students will be able to:					
CO 1	Memorize concept of dipole moment, polar and non- polar molecules, examples of colligative properties, basic terms of radioactivity and Surface tension.					
CO 2	Differentiate Rotational Spectroscopy and Vibrational Spectroscopy Raman Spectroscopy, Freundlich Adsorption Isotherm and Langmuir Adsorption Isotherm					
CO 3	Explain first and sec Clapeyron equation, va	Evaluate				
CO 4	Apply spectroscopic of space information for of Dating method		olving different numer on structure of unit cell		Apply	

T.Y.B.Sc.		Chemistry Paper No. I (Physical Chemistry)		Sem-VI		
Course	Course Code: USC6CH1 Course Coordinator: Dr. S.S. Pa V.S. Kamble					
COs.	After completing the course, students will be able to:					
CO 1	Recall the concept Ionic Strength, activity and activity Coefficient, examples of different polymers, and concept of nanomaterial and nanotechnology					
CO 2	Differentiate between C and artificial polymers.	Understand				
CO 3	Understand cell represe rule to determine degre	Evaluate				
CO 4	Apply co-precipitation laboratory	method for synthesis	of new nano	materials in	Apply	

T.Y. B.Sc. Chemistry (Paper II)

	T.Y.B.Sc.		Chemistry Paper No. II Inorganic Chemistry		Sem-V	
(Course Code : USC5C	H2	Course Coordinator:	Prof. Dr. I	3.V. Jadhav	
COs.	After completing the course, students will be able to:			Bloom Taxonomy Level (BTL)		
CO 1	Explain concept of Superconductivity, types of super conductors and its applications, imperfections in solids and their effect on properties, chemistry of inner transition elements, extraction and applications, chemistry of non-aqueous solvents				Understand	

CO 2	Explain electrical properties of conductors, insulators and semiconductors on the basis of Band theory. Explain Inorganic Polymers, Chemistry of interhalogens and Pseudo halogens.	Understand
CO 3	Assign the point group for given molecules using basic concepts of molecular symmetry and construct molecular orbital diagrams for heteronuclear diatomic molecules and polyatomic species.	Apply
CO 4	Determine packing density of different types of cubic unit cells	Evaluate

T.Y.B.Sc.		Chemistry Paper No. II Inorganic Chemistry		Sem-VI			
Course	Course Code: USC6CH2 Course Coordinator: Prof. Dr. 1						
COs.	After completing the course, students will be able to:						
CO 1	Demonstrate the knowl metallurgy.	Understand					
CO 2	Explain importance of a of nanomaterials and for	Understand					
CO 3	Construct molecular or compounds, Analyse th	Apply					
CO 4	Measure Crystal field s octahedralcomplexes us			d Theory.	Evaluate		

Course Outcomes

T.Y.B.Sc. Physical Chemistry and Inorganic Chemistry Practical 2023-24 SEMESTER-V

T.Y.B.Sc. Cl		Chemistry Pract	ical Paper No. I	Sem-V		
	Course Coordinator: Prof. Dr. I Jadhav, Dr. S.S. Patil, Dr. V.S. Ka					
COs.	After completing the course, students will be able to:					
CO 1	Handle and Understand principles of different instruments like Potentiometry, Conductometry, pH Metry.					
CO 2	Determine mo	Understand				
CO 3	With the help	Analyse				
CO 4	Develop the practical skills for preparation of different inorganic metal complexes				Understand	
CO 5	1	percentage purity of t and quantitively and			Analyse	

Course Outcomes

T.Y.B.Sc. Physical Chemistry and Inorganic Chemistry Practical 2023-24 SEMESTER-VI

T.Y.B.Sc.		Chemistry Pract	tical Paper No. II	Sem-VI		
	Course Code :	USC6CP1	Course Coordinato Dr. S.S. Patil, Dr. V		3.V. Jadhav,	
COs.	After complet	ing the course, stud	lents will be able to:		Bloom Taxonomy Level (BTL)	
CO1	Handle and Understand principles of different instruments like Colorimetry, Potentiometry, Conductometry.					
CO2	Determine mo	Analyse				
CO3	Interpret the data and to cal	Analyse				
CO 4	Develop the metalcomplex	Understand				
CO 5			y of the inorganic impurity identification	-	Analyse	

T.Y.B.Sc. Chemistry Paper III

T.Y.B.Sc. Organ			nicChemistry (Paper-V)	Sem-V	7
Course	Course Code: USC5CH4 Course Coordinator: Prof. (Dr.) B.D.				
COs. No.	After completing the course, students will be able to:				
CO1	Explain the fate of the excited molecule in photochemistry and systematic study of photochemical reactions.				
CO2	Apply the concepts in writing and predicting the mechanism of organic reactions.				Apply

CO3	Examine the spectral data of UV-Visible, IR, NMR and Mass spectroscopy for structure elucidation of organic compounds.	Evaluate
CO4	Construct the structures of carbohydrates and its inter-conversion, describe the structures of proteins, nucleic acids and its components.	Apply

T.Y.B.Sc. Organ		ic Chemistry (Paper-V)	Sem-V	I		
Course Code: USC6CH4 Course Coordinator: Prof. (Dr.) B.D.					. Aghav	
COs. No.	After completing the course, students will be able to:					
CO1	Explain stereoselectivity, stereospecificity, mechanism and stereochemistry of substitution, elimination and addition and rearrangement reactions.					
CO2	Predict the synthons and functional group transformation and classify the selectivity of reagents and catalyst in organic synthesis.					
CO3	Describe the structures of proteins, nucleic acids and its components.					
CO4	Interpret the analytical and chemical evidences for structure elucidation of natural products					

T.Y.B.Sc. Chemistry Paper IV

	T.Y.B.Sc.	•	Paper No. IV Chemistry	Se	em-V
	Course Code: USC5CH4 Course Coordinator: Dr. Thakur		. (Mrs.) J.S.		
COs. No.	After completing the	course, studen	ts will be able to	:	Bloom Taxonomy Level (BTL)
CO 1	Define, explain and understand the concepts of quality control, quality assurance, grades of chemicals, concentrations and importance of sampling at a basic level			2 (Understand)	
CO 2	Explain the theoretical principals of titrations and apply them for end point detection and selection of suitable indicators			3 (Apply)	
CO 3	Apply the Nernst law to the solvent extraction and describe the principles and processes of solvent extraction and solid phase extraction.			3 (Apply)	
CO 4	Understand the role of fields and explain the Spectroscopic technique	ne principles, i			2 (Understand)

	T.Y.B.Sc.		Paper No. IV Chemistry	Se	m-VI
	Course Code: USC6CH4 Course Coordinator: Dr. Thakur			. (Mrs.) J.S.	
COs. No.	After completing the	e course, studen	ts will be able to	:	Bloom Taxonomy Level (BTL)
CO 1	Understand and expelectroanalytical tecamperometry.	plain the fund chniques such		C	2 (Understand)
CO 2	Understand basics of principle, instrumenta methods such as GC, I	ation and work	ing of advanced		2 (Understand)

CO 3	Understand and explain principles of thermal and radioanalytical methods and study of thermal decomposition of materials.	2 (Understand)
CO 4	Apply analytical techniques for the analysis of cosmetics and food.	3 (Apply)

Course Outcomes T.Y.B.Sc. Organic Chemistry and Analytical Chemistry Practical 2023-24 SEMESTER-V

7	Γ.Y.B.Sc.	Chemistry Practical Analytical Che	_	Sem-V	7
	Course Code	e: USC5CP2	Course Co Thakur	oordinator: Dr. (I	Mrs.) J.S.
COs.	After complet	ing the course, stude	nts will be abl	e to:	Bloom Taxonomy Level (BTL)
CO 1	such as cosme	the skills in quantitativetics, environmental sa ethods to obtain exper	mples, fertiliz	ers etc., apply	3 (Apply)
CO 2		nental techniques for the bration of instruments			4 (Analyze)
CO 3	Identify chemical type of components present in binary mixture of solid-solid mixture and unknown organic compound by micro-scale technique.			3 (Apply)	
CO 4		the separation and qua solid-solid mixtures by	•	•	3 (Apply)

T.Y.B.Sc. Organic Chemistry and Analytical Chemistry Practical 2023-24 SEMESTER-V

Т	Г.Y.B.Sc.	Chemistry Practical Analytical Ch	_	Sei	n-VI
	Course Code: USC6CP2 Course Coordinator: Dr. (In the control of t				
COs.	After complet	ing the course, studen	its will be able t	o:	Bloom Taxonomy Level (BTL)
CO 1	identification	the analytical skills req , separation and analysi l samples, pharmaceuti	s of food sample		4 (Analyze)
CO 2	Explore various analytical techniques for the analysis of commercial samples and learn graphical and numerical data representation			4 (Analyze)	
CO 3	Demonstrate the separation of the liquid-liquid and solid-liquid mixtures by fractional distillation.			2 (Understand)	
CO 4	1	rnthesis with calculation redictions of spectral dioduct.		-	3 (Apply)

Semester-V **Theory**

	T.Y.B.Sc.	Drugs and Dyes (Paper-V)	Sem-V	
Course	Code: USC5CH5	Course Coordinator: D	r. S.N. Vajekar, Dr.	J. M. Pawara
COs. No.	After completing the course, students will be able to:			Bloom Taxonomy Level (BTL)
CO1	Define the routes of administration, methods of ingestion, tolerance, withdrawal and interactions of these drugs with other psychoactive and non-psychoactive drugs.		Remember	

CO2	Explain details about the pharmacodynamics agents used for the treatment of different diseases side effects and synthesis.	Understand
CO3	Classify the dyes based on applications and dyeing methods	Understand
CO4	Make use of Unit processes required for the synthesis of dyes intermediates	Apply

Semester-V **Practical**

	T.Y.B.Sc.	PRACTICALS OF USC5CH	5 Sem-V	
Course	Code: USC5CP3	Course Coordinator:	Dr. S.N. Vajekar, Dr.	J. M. Pawara
COs.	After completing the	course, students will be able to	:	Bloom Taxonomy Level (BTL)
CO1	Synthesis of simple dru	ıgs i.e aspirin		Evaluate
CO2	Estimation of Ibuprofer	1.		Create
CO3	Determination of iron f	rom given drug sample.		Apply
CO4	Project on cotton dyein	g.		Apply

Semester-VI **Theory**

	T.Y.B.Sc.	Drugs and Dyes (Paper-V)	Sem-V	I
Course	Code: USC6CH5	Course Coordinator: 1	Dr. S.N. Vajekar, Dr.	J. M. Pawara
COs. No.	After completing the	course, students will be able to:		Bloom Taxonomy Level (BTL)
CO1	Explain details about the different diseases side e	e chemotherapeutic agents used for feets and synthesis.	or the treatment of	Understand
CO2		design and development and drug cles in medicinal chemistry.	metabolism and	Understand
CO3	Classify the dyes based	on Chemical Constitution and pre	eparations	Understand
CO4	Explain the non-textile	uses, Health and Environmental F	lazards of the dyes	Understand

Semester-VI **Practical**

	T.Y.B.Sc.	PRACTICALS OF USC6CH5	Sem-V	I
Course	Code: USC6CP3	Course Coordinator: I	Dr. S.N. Vajekar, Dr.	J. M. Pawara
COs.	After completing the	course, students will be able to:		Bloom Taxonomy Level (BTL)
CO1	Synthesize, Crystallizar purification.	tion Physical constant, able to une	derstand process of	Apply
CO2	Determination of Calci	um from given Calcium tablet		Create
CO3	Examine monograph			Evaluate
CO4	Apply the TLC techniq	ue for the separation of the mixtur	e of dyes	Apply

Semester-V Theory

	T.Y.B.Sc.	Drugs and Dyes (Paper-V)	Sem-V	7
Course	Code: USC5CH5	Course Coordinator:	Dr. S.N. Vajekar, Dr.	J. M. Pawara
COs. No.	After completing the	course, students will be able to	0:	Bloom Taxonomy Level (BTL)
CO1	Define the routes of administration, methods of ingestion, tolerance, withdrawal and interactions of these drugs with other psychoactive and non-psychoactive drugs.			Remember
CO2	Explain details about to of different diseases side	he pharmacodynamics agents ue effects and synthesis.	ised for the treatment	Understand
CO3	Classify the dyes based	on applications and dyeing met	thods	Understand
CO4	Make use of Unit proce	sses required for the synthesis of	of dyes intermediates	Apply

Semester-V Practical

	T.Y.B.Sc.	PRACTICALS OF USC5CH5	Sem-V
Course	Code: USC5CP3	Course Coordinator: I	Dr. S.N. Vajekar, Dr. J. M. Pawara
COs.	After completing the	course, students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Synthesis of simple dru	ıgs i.e aspirin	Evaluate
CO2	Estimation of Ibuprofer	1.	Create
CO3	Determination of iron f	rom given drug sample.	Apply
CO4	Project on cotton dyein	g.	Apply

Semester-VI Theory

T.Y.B.Sc.		Drugs and Dyes (Paper-V)	Sem-V	I	
Course	Code: USC6CH5	Course Coordinator:	Dr. S.N. Vajekar, Dr.	J. M. Pawara	
COs. No.	After completing the course, students will be able to:				
CO1	Explain details about the chemotherapeutic agents used for the treatment of different diseases side effects and synthesis.				
CO2	Explain drug discovery design and development and drug metabolism and application of nanoparticles in medicinal chemistry.			Understand	
CO3	Classify the dyes based on Chemical Constitution and preparations				
CO4	Explain the non-textile	uses, Health and Environmental	Hazards of the dyes	Understand	

Semester-VI Practical

	T.Y.B.Sc.	PRACTICALS OF USC6CE	I5 Sem-V	I		
Course	Course Code: USC6CP3 Course Coordinator: Dr. S.N. Vajekar, Dr.					
COs.	After completing the	course, students will be able t	o:	Bloom Taxonomy Level (BTL)		
CO1	Synthesize, Crystallization Physical constant, able to understand process of purification.					
CO2	Determination of Calcium from given Calcium tablet			Create		
CO3	Examine monograph			Evaluate		
CO4	Apply the TLC technique	ue for the separation of the mix	ture of dyes	Apply		

।। विद्या विनयेन शोभते।। Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR

ARTS, COMMERCE AND SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC (3rd Cycle - CGPA 3.61)
'College with Potential for Excellence' Status Awarded by UGC
'Best College Award' by University of Mumbai

Department of Chemistry Course Outcomes

M.Sc.-I Organic Chemistry Semester-I

M.Sc-I Organic Chemistry		Inorganic	Inorganic Chemistry		
	Course Code: PSC1IC1 Course Coordinator: Dr. Anuja Singh				
Sr.No.	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Explain theories of bonding, hybridization, resonance concept, MOT for diatomic species of first transition Series, Polyatomic species and Higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.				Understand
CO2	Explain The concept of band theory, Fermi level, K-Space and Brillouin Zones. Structures of Compounds of the type: AB, AB2 etc. and Preparative methods of inorganic solids & nano materials.				Understand
CO3	Construct Group Multiplication Tables, Character tables using concept of Molecular Symmetry and Group Theory.				Apply
CO4	Determine electronic parameters such as Δ , B, C, Nephelauxetic ratio, formation constants of metal complexes and Characterize coordination compounds using techniques like thermal studies, Conductivity measurements, electronic spectral and magnetic measurements, IR, NMR and ESR spectroscopic				Evaluate

M.ScI Organic Chemistry Inorganic Che		mistry Practical	Sem-I		
Course Code: PSC1ICP Course Coordinator: Dr. B.V. Jadha Patil			av Dr. D. K.		
Sr. No.	After completing the course, Students will be able to:			Bloom Taxonomy Level (BTL)	
CO1	Prepare various inorg tetrachloroCuprate (Cobalt (III) Nitrate Hydroniumdichlorobi	II) (Me4 N) 2 , Bis (ethylene	2[CuCl4],Tetrammediammine) Copp	ninemonocarbanato	Understand

CO2	Determine the electrolytic nature of inorganic compounds	Apply
CO3	Apply Slope intercept method for determination of equilibrium constants for Fe $^{\!$	Apply
CO4	Analyze the inorganic complex for percentage of metal and ligand.	Analyse

, ,		Ü	Course Co	Sem-I	
Sr. No. After completing the course, Students will be able to:					Bloom Taxonomy Level (BLT)
CO1	Understand the types of reaction and their applications			Remember	
CO2	Summarize the various aspects of aromaticity, aliphatic and aromatic nucleophilic substitution reactions with their mechanism and examples.			Understand	
CO3	Apply the concept of Configurational descriptors (R,S nomenclature) to chiral centres in Organic compounds			Apply	
CO4	Predict the mechanism, selectivity, importance and applications of oxidizing and reducing agent			Apply	

M.Sc	M.ScI Organic Chemistry Organic Chemistry Practical Sem-				
	Course Code: PSC1IOCP Course Coordinator: Dr. J.M. P				Pawara
Sr. No	After completing the c	ourse, Students	will be able to:		Bloom Taxonomy Level (BLT)
CO1	Plan preparation of organic compounds			Apply	
CO2	Demonstrate the ski recrystallization and sub	_	_	compounds by	Understand
CO3	Apply the thin layer consynthesized product.	hromatography	technique to chec	k the purity of the	Apply
CO4	Can Sketch the struct Biodraw.	ture of organic	compounds usin	g software Chem	Apply

M.Sc	I.ScI Organic Chemistry Analytical Chemistry Sem-I				
	Course Code: PSC1A	AC1	Course Co	ordinator: Dr. S.M.	Chilate
Sr. No	After completing the course, Students will be able to:				Bloom Taxonomy Level (BLT)
CO1	Explain the concept of data domain, performance characteristics of an instrument/method, total quality management, quality standards for laboratories, quality audits and quality reviews.				Understand
CO2	Discover the applications of UV-Visible spectroscopy, IR spectroscopy, Differential scanning calorimetry.				Apply
CO3	Identify the need of automation in chemical analysis, safety measures in laboratory, need of accreditation of laboratories and GLP.				Evaluate
CO4	Interpret the data based	on calculations	and statistical tests	S.	Evaluate

M.Sc	I Organic Chemistry	Analytical Che	mistry Practical	Sem-I	
	Course Code: PSC1A	ACP	Course Cod	ordinator: Dr. S.M.	Chilate
Sr. No	After completing the course, Students will be able to:			Bloom Taxonomy Level (BLT)	
CO1	Demonstrate the titration skills for the analysis of samples of a diverse variety			mples of a diverse	Apply
CO2	Apply the statistical methods for data analysis				Apply
CO3	Analyze the measured data based on Chemical principles			Analyze	
CO4	Measure the characteris	tics of ion excha	nge resins		Evaluate

M.ScI Organic Chemistry Physical Chem		nistry (Electives-I)	Sem-	I	
	Course Code: PSC1PC1 Course Coordinator: Dr. V.S. F			Kamble	
Sr. No	After completing the o	course, Students	s will be able to:		Bloom Taxonomy Level (BLT)
CO1	Prove Maxwell relating gases, Joule Thoms inversion temperature absolute entropy	son experiment,	Joule Thomson	coefficient and	Understand

CO2	Make use of quantum mechanics for Particle waves and Schrödinger wave	Apply
002	equation, wave functions, properties of wave functions, Normalization of	
	wave functions, orthogonality of wave functions. Particle in a one, two- and	
	three-dimensional box	

M.ScI Organic Chemistry Physical C		Physical Chem	nistry (Electives-II)	Sem	-I
	Course Code: PSC1PC1 Course Coordinator: Dr. V.S. I			Kamble	
Sr. No	. No After completing the course, Students will be able to:				Bloom Taxonomy Level (BLT)
CO1	Define, understand basic terms of Chemical Dynamics i.e. rate constant, order of reaction, molecularity of reaction also compare Composite Reactions and Polymerization reactions			Evaluate	
CO2	Make use of Colloids an	d Surface Pheno	omena in daily applic	ations	Apply

M.ScI Organic Chemistry		Physical Chemistry Practical		Sem-I	
	Course Code: PSC1PCP Course Coordinator: Dr. V.			7.S. Kamble	
Sr. No.	After completing the o	course, Students	s will be able to:		Bloom Taxonomy Level (BLT)
CO1	Know the principles Conductometry, pH Me		instruments like	Potentiometry,	Understand
CO2		Determine the heat of solution of sparingly soluble acid and identify the eaction between acetone and iodine.			

M.ScI Organic Chemistry		Research Methodology		Sem-I		
	Course Code: PSC1	RM	Course Coo	ordinator: Dr. J.M.	Pawara	
Sr. No.	Course Outcomes				Bloom Taxonomy Level (BTL)	
CO1	Explain the importance of different types of print and digital resources for gap analysis and data collection.					
CO2	Design/propose method conduct research	Design/propose methodologies preferably with green and safe approach to conduct research				
CO3	Anayze scientific data by statistical and graphical methods.				Analyse	
CO4	Apply skills of chemica	al safety & ethica	al handling of cher	nicals	Apply	

M.Sc.-I Organic Chemistry Semester-II

M.ScI Organic Chemistry Inor		Inorganic	Chemistry	Sem-I	ſ
	Course Code: PSC2	IC2	Course Coo	ordinator: Dr. Anuj	ja Singh
Sr.No.	After completing the course, Student will able to:				
CO1	Recall Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rules, Preparation and property's structure and bonding of the Organometallic compounds				
CO2	Explain Photochemical Reactions, Ligand substitution reactions of: Octahedral complexes, Square planar complexes, trans-effect, its theories and applications. Redox reactions: inner and outer sphere mechanisms, stereochemistry of substitution reactions of octahedral complexes				
CO3	Explain Bioinorganic Chemistry related to biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Copper containing enzymes, Nitrogen fixation Metal ion transport and storage, Medicinal applications of cis-platin and related compounds.				
CO4	Discuss the implication environment and biolog		-	active materials on	Create

M.ScI Organic Chemistry Inorganic Chemistry		emistry Practical	Sem-I	Í	
Course Code: PSC2ICP			Course Coordinator: Dr. B.V. Jadhav Dr. D.K. Patil		
Sr. No	After completing the course, Student will able to:				
CO1	Analyse ores and allo	Analyse ores and alloys using volumetric and gravimetric analysis.			
CO2	Estimate percentage of metals in the ore and alloy			Evaluate	
CO3	Apply the potentiometr	ic method for rec	dox titrations of Fe	e, Cu etc.	Apply

M.ScI Organic Chemistry Orga		Organic	c Chemistry S		em-II	
	Course Code: PSC20	OC2	Course Coo	ordinator: Dr. J.M.	Pawara	
Sr. No	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)	
CO1	Explain the Generation of carbanion, enolate, enamine with their alkylation & acylation reaction and name reactions with their mechanism.				Understand	
CO2	Illustrate mechanism, stereochemistry, applications and importance of name reactions and rearrangements.			Understand		
CO3	Explain the role of reagents in organic synthesis.			Analyse		
CO4	Interpret the structure techniques.	of organic com	pounds using con	mbined of spectral	create	

M.Sc	M.ScI Organic Chemistry Organic Chemistry Practical Sem-II]		
	Course Code: PSC20	OCP	Course Coo	ordinator: Dr. J.M.	Pawara
Sr. No	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Identify the chemical type of components present in a binary mixture of an organic compound.			Apply	
CO2	Apply skills in the separation and qualitative analysis of organic compounds of binary mixtures by microscale technique.				Apply
CO3	Make use of crystallization, sublimation and distillation for purification of the organic compounds.			Apply	
CO4	Demonstrate the prac	-	n the preparation	n of the organic	Understand

M.ScI Organic Chemistry		Analytical Chemistry		Sem-II	
Course Code: PSC2AC1		Course Coordinator: Dr. S.M. Chilate		Chilate	
Sr. No	After com	pleting the cour	se, Student will a	ble to:	Bloom Taxonomy Level (BTL)
CO1	Translate the theoret spectroscopic technic techniques into applic	ques, radioanal		-	Understand

CO2	Explain the working principles of surface analytical techniques such as SEM, STM, TEM, ESCA, Auger spectroscopy and ICP-AES	Understand
CO3	Compare the different ion sources and mass analyzers in mass spectroscopy	Analyze
CO4	Determine the electrical quantities such as charge, current, potential using Electroanalytical methods	Evaluate

M.ScI Organic Chemistry Ana		Analytical Chemistry Practical		Sem-II	
	Course Code: PSC2ACP Course Coordinator: Dr. S.M.			. Chilate	
Sr. No	After comp	pleting the cour	se, Student will a	ble to:	Bloom Taxonomy Level (BTL)
CO1	Demonstrate the operation	ational skills on	the selected instru	ments and retrieve	Understand
CO2	Develop a sense of environmental safety	time managen	nent, safe use o	of chemicals and	Apply

M.ScI Organic Chemistry Physical Chemistry		Physical Chem	istry (Elective-I)	Sem-I	ſ
	Course Code: PSC2PC2 Course Coordinator: Dr. V.S. k			Kamble	
Sr. No					Bloom Taxonomy Level (BTL)
CO1	Explain Bioenergetics, Real solutions and Fugacity of real gases also show graphical representations of BET isotherms			Apply	
CO2	Prove expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen and aapplication of the Schrödinger equation to two electron system			Evaluate	

M.ScI Organic Chemistry Ph		Physical Chem	Physical Chemistry (Elective-II)		П
Course Code: PSC2PC2			Course Coordi	nator: Dr. V.S.	Kamble
Sr. No	After completing the o	eourse, Student	will able to:		Bloom Taxonomy Level (BTL)
CO1	Dynamics. Elementa catalysed by enzymes	Explain terms involved in Chemical Kinetics and Molecular Reaction A Dynamics. Elementary Reactions in Solution, Kinetics of reactions catalysed by enzymes -Michaelis-Menten analysis, Lineweaver-Burk and Eadie Analyses, Inhibition of Enzyme action.			

CO2	Apply Photochemistry to solve NET, SET GATE Problems.	Apply

M.ScI Organic Chemistry Physical Chem		nistry Practical	Sem-II			
	Course Code: PSC2PCP Course Coordinator: Dr. V.S.					
Sr. No	r. No After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)	
CO1	Know principles of Conductometry, pH Met		instruments liketer.	e Potentiometry,	Understand	
CO2	Make use of graphical representation to identify Shape of Orbitals.				Apply	

M.ScI Organic Chemistry		On Job Training (OJT)		Sem-II	
	Course Code: PSC2OJT Course Coordinator: All the T				Ceachers
Sr. No	Sr. No After completing the course, Student will able to:				
CO1	On-the-job training aims to enhance employees' practical skills and knowledge within their specific work environment.			Understand	
CO2	The course outcomes include improved job proficiency, increased task efficiency, and a better understanding of workplace processes.			Apply	

M.Sc.-I Analytical Chemistry Semester-I

M.ScI Organic Chemistry		Physical Chemistry		Sem-I	
	Course Code: PSC1PC1 Course Coordinator: Dr. V.S. K				
Sr. No	After completing the course, Students will be able to:			Bloom Taxonomy Level (BLT)	
CO1	Prove Maxwell relations and its significance and applications to ideal gases, Joule Thomson experiment, Joule Thomson coefficient and inversion temperature. Apply Third law of Thermodynamics to find out absolute entropy				Understand
CO2	Make use of quantum mechanics for Particle waves and Schrödinger wave equation, wave functions, properties of wave functions, Normalization of wave functions, orthogonality of wave functions. Particle in a one, two- and three-dimensional box			Apply	
CO1	Define, understand basic terms of Chemical Dynamics i.e. rate constant, order of reaction, molecularity of reaction also compare Composite Reactions and Polymerization reactions			Evaluate	
CO2	Make use of Colloids and Surface Phenomena in daily applications			Apply	

M.ScI Organic Chemistry Physical Che		mistry Practical	Se	m-I	
	Course Code: PSC1PCP Course Coordinator: Dr. V.				
Sr. No.	The second secon				Bloom Taxonomy Level (BLT)
CO1	Know the principles of different instruments like Potentiometry, Conductometry, pH Metry.				Understand
CO2	Determine the heat of solution of sparingly soluble acid and identify the reaction between acetone and iodine.			Apply	

M.ScI Organic Chemistry		Organic Chemistry		Sem-I		
	Course Code: PSC1IOC1			Course Coordinator: Dr. J.M. Pawara		
Sr. No.	After completing the course, Students will be able to:			Bloom Taxonomy Level (BLT)		
CO1	Understand the types of reaction and their applications			Remember		
CO2	Summarize the various aspects of aromaticity, aliphatic and aromatic nucleophilic substitution reactions with their mechanism and examples.			Understand		
CO3	Apply the concept of Configurational descriptors (R,S nomenclature) to chiral centres in Organic compounds			Apply		
CO4	Predict the mechanism, selectivity, importance and applications of oxidizing and reducing agent			Apply		

M.ScI Organic Chemistry		Organic Chemistry Practical		Sem-I	
	Course Code: PSC1IOCP Course Coordinator: Dr. J.M.			Pawara	
Sr. No	After completing the course, Students will be able to:			Bloom Taxonomy Level (BLT)	
CO1	Plan preparation of organic compounds			Apply	
CO2	Demonstrate the skill of purification of organic compounds by recrystallization and sublimation methods.			Understand	
CO3	Apply the thin layer chromatography technique to check the purity of the synthesized product.			Apply	
CO4	Can Sketch the structure of organic compounds using software Chem Biodraw.			Apply	

M.ScI Organic Chemistry		Analytical Chemistry		Sem-I	
Course Code: PSC1AC1			Course Coordinator: Dr. S.M. Chilate		
Sr. No	After completing the course, Students will be able to:			Bloom Taxonomy Level (BLT)	
CO1	Explain the concept of data domain, performance characteristics of an instrument/method, total quality management, quality standards for laboratories, quality audits and quality reviews.			Understand	

CO2	Discover the applications of UV-Visible spectroscopy, IR spectroscopy, Differential scanning calorimetry.	Apply
CO3	Identify the need of automation in chemical analysis, safety measures in laboratory, need of accreditation of laboratories and GLP.	Evaluate
CO4	Interpret the data based on calculations and statistical tests.	Evaluate

M.Sc	I Organic Chemistry	Analytical Che	emistry Practical	Sem-I	
	Course Code: PSC1ACP Course Coordinator: Dr. S.M. C				
Sr. No	After completing the c	ourse, Students	s will be able to:		Bloom Taxonomy Level (BLT)
CO1	Demonstrate the titration skills for the analysis of samples of a diverse variety			Apply	
CO2	Apply the statistical methods for data analysis			Apply	
CO3	Analyze the measured of	lata based on Ch	emical principles		Analyze
CO4	Measure the characteris	tics of ion excha	inge resins		Evaluate

M.Sc-I Organic Chemistry		Inorganic Chemistry (Elective-I)		Sem-I	
	Course Code: PSC1	IC1	Course Coordinate	or: Dr. Anuja Sing	h
Sr.No.	Sr.No. After completing the course, Student will able to:			Bloom Taxonomy Level (BTL)	
CO1	Explain theories of bonding, hybridization, resonance concept, MOT for diatomic species of first transition Series, Polyatomic species and Higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.				Understand
CO2	Explain The concept of band theory, Fermi level, K-Space and Brillouin Zones. Structures of Compounds of the type: AB, AB2 etc. and Preparative methods of inorganic solids & nano materials.				Understand

M.Sc-I Organic Chemistry Inorganic Che		mistry (Elective-II)	Sem-	I	
	Course Code: PSC1	IC1	Course Coordinate	or: Dr. Anuja Sing	h
Sr.No.	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Construct Group Mult Molecular Symmetry a			using concept of	Apply

CO2	Determine electronic parameters such as Δ, B, C, Nephelauxetic ratio, formation constants of metal complexes and Characterize coordination compounds using techniques like thermal studies, Conductivity measurements, electronic spectral and magnetic measurements, IR, NMR and ESR spectroscopic	Evaluate
-----	---	----------

M.Sc	M.ScI Organic Chemistry				
	Course Code: PSC1ICP Course Coordinator: Dr. B.V. Jac Patil				av Dr. D. K.
Sr. No.	After completing the course, Students will be able to:			Bloom Taxonomy Level (BTL)	
CO1	Prepare various inorganic complexes such as Bis-(tetramethylammonium) tetrachloroCuprate (II) (Me4 N) 2[CuCl4],Tetramminemonocarbanato Cobalt (III) Nitrate, Bis (ethylenediammine) Copper (II) Sulphate, Hydroniumdichlorobis(dimethylglyoximato) etc.			Understand	
CO2	Determine the electrolytic nature of inorganic compounds			Apply	
CO3	Apply Slope intercept method for determination of equilibrium constants for Fe ⁺³ / SCN- system.			Apply	
CO4	Analyze the inorganic of	complex for perc	entage of metal an	d ligand.	Analyse

M.ScI Organic Chemistry		Research Methodology		Sem-I	
	Course Code: PSC1RM Course Coordinator: Dr. J.M. 1			Pawara	
Sr. No.	Course Outcomes				Bloom Taxonomy Level (BTL)
CO1	Explain the important gap analysis and data	•	pes of print and d	igital resources for	Understand
CO2	Design/propose method conduct research	dologies preferat	oly with green and	d safe approach to	Create
CO3	Anayze scientific data b	by statistical and	graphical methods	S.	Analyse
CO4	Apply skills of chemica	ıl safety & ethica	al handling of chen	nicals	Apply

M.Sc.-I Organic Chemistry Semester-II

M.ScI Organic Chemistry		Physical Chemistry		Sem-II	
	Course Code: PSC21	PC2	Course Coo	ordinator: Dr. V.S.	Kamble
Sr. No	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Explain Bioenergetics, Real solutions and Fugacity of real gases also show graphical representations of BET isotherms			Apply	
CO2	Prove expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen and aapplication of the Schrödinger equation to two electron system			Evaluate	
CO1	Explain terms involved in Chemical Kinetics and Molecular Reaction Dynamics. Elementary Reactions in Solution, Kinetics of reactions catalysed by enzymes -Michaelis-Menten analysis, Lineweaver-Burk and Eadie Analyses, Inhibition of Enzyme action.			Apply, Evaluate	
CO2	Apply Photochemistry t	to solve NET, SI	ET GATE Problen	18.	Apply

M.ScI Organic Chemistry Physical Chem		nistry Practical	Sem-I	I	
	Course Code: PSC2PCP Course Coordinator: Dr. V.S.				
Sr. No	After completing the co	ourse, Student	will able to:		Bloom Taxonomy Level (BTL)
CO1	Know principles of Conductometry, pH Met		instruments like	e Potentiometry,	Understand
CO2	Make use of graphical re	epresentation to	identify Shape of	Orbitals.	Apply

M.Sc	M.ScI Organic Chemistry Organic		Chemistry	Sem-II	
Course Code: PSC2OC2		Course Coo	ordinator: Dr. J.M.	Pawara	
Sr. No	After com	pleting the cour	se, Student will a		Bloom Taxonomy Level (BTL)

CO1	Explain the Generation of carbanion, enolate, enamine with their alkylation & acylation reaction and name reactions with their mechanism.	Understand
CO2	Illustrate mechanism, stereochemistry, applications and importance of name reactions and rearrangements.	Understand
CO3	Explain the role of reagents in organic synthesis.	Analyse
CO4	Interpret the structure of organic compounds using combined of spectral techniques.	create

M.ScI Organic Chemistry		Organic Chemistry Practical		Sem-II	
	Course Code: PSC2OCP Course Coordinator: Dr. J.M. I			Pawara	
Sr. No	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Identify the chemical type of components present in a binary mixture of an organic compound.				Apply
CO2	Apply skills in the separation and qualitative analysis of organic compounds of binary mixtures by microscale technique.				Apply
CO3	Make use of crystallization, sublimation and distillation for purification of the organic compounds.				Apply
CO4	Demonstrate the prac compounds derivatives.	-	n the preparation	n of the organic	Understand

M.ScI Organic Chemistry Analytica		Analytical	Chemistry	Sem-I	I
	Course Code: PSC2A	AC1	Course Coo	ordinator: Dr. S.M.	Chilate
Sr. No	After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Translate the theoretical principles of advanced separation techniques, spectroscopic techniques, radioanalytical techniques, electroanalytical techniques into applications.				Understand
CO2		Explain the working principles of surface analytical techniques such as SEM, STM, TEM, ESCA, Auger spectroscopy and ICP-AES			Understand
CO3	Compare the different ion sources and mass analyzers in mass spectroscopy			Analyze	
CO4	Determine the electrical Electroanalytical method	-	h as charge, curre	ent, potential using	Evaluate

M.ScI Organic Chemistry Analytical Chemistry		mistry Practical	Sem-I	II	
	Course Code: PSC2ACP Course Coordinator: Dr. S.M.			. Chilate	
Sr. No				Bloom Taxonomy Level (BTL)	
CO1	Demonstrate the operation	ational skills on	the selected instru	ments and retrieve	Understand
CO2	Develop a sense of environmental safety	time managen	nent, safe use o	of chemicals and	Apply

M.ScI Organic Chemistry Ino		Inorganic Che	emistry (Elective-I)	Sem-	II
	Course Code: PSC2	IC2	Course Coord	inator: Dr. Anuj	ja Singh
Sr.No.	,			Bloom Taxonomy Level (BTL)	
CO1	sixteen electron rules,	Recall Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rules, Preparation and property's structure and bonding of the Organometallic compounds			
CO2	Explain Photochemica Octahedral complexes, and applications. Red stereochemistry of subs	Square planar lox reactions: in	complexes, trans-efformer and outer sphero	ect, its theories re mechanisms,	Understand

M.ScI Organic Chemistry		Inorganic Che	norganic Chemistry (Elective-II)		II
	Course Code: PSC2IC2 Course Coordinator: Dr. Anuja			ja Singh	
Sr.No.	Sr.No. After completing the course, Student will able to:			Bloom Taxonomy Level (BTL)	
CO1	Explain Bioinorganic Chemistry related to biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Copper containing enzymes, Nitrogen fixation Metal ion transport and storage, Medicinal applications of cis-platin and related compounds.				Understand
CO2	Discuss the implication environment and biolog			ve materials on	Create

M.Sc	M.ScI Organic Chemistry Inorganic Chemistry		mistry Practical	Sem-I	I
Course Code: PSC2ICP		Course Coordin	ator: Dr. B.V. Jad Patil	hav Dr. D.K.	
Sr. No	Sr. No After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	Analyse ores and alloys	s using volumetri	ic and gravimetric	analysis.	Analyse
CO2	Estimate percentage o	f metals in the or	re and alloy		Evaluate
CO3	Apply the potentiometr	ic method for rec	dox titrations of Fe	, Cu etc.	Apply

M.ScI Organic Chemistry On Job Tra		aining (OJT)	Sem-II		
	Course Code: PSC2OJT Course Coordinator: All the T			Ceachers	
Sr. No	Sr. No After completing the course, Student will able to:				Bloom Taxonomy Level (BTL)
CO1	On-the-job training aims to enhance employees' practical skills and knowledge within their specific work environment.				Understand
CO2	The course outcomes efficiency, and a better			•	Apply

M.Sc.-II Organic Chemistry Semester III

M.Sc	M.ScII Organic Chemistry Paper I- Theo Chem			Sem-II	I
	Course Code - PSC3TOC Course Coordinator-Prof. Dr. V.				
COs. No.	After completing the course students will be able to:				
CO1	Explain the structure, generation, stability and reactions of organic reactive intermediates and importance of neighbouring group participation, role of FMOs.				Understand
CO2	Apply the principles of photochemistry to carbonyl compounds, olefins, arenes and radical reactions.			Apply	
CO3	Identify pericyclic reactions and describe cycloaddition reactions, electrocylic reactions and sigmatropic rearrangements			Apply	
CO4	and reactivity of addit	Analyze conformation of medium size ring, fused ring, bridge ring, steroids and reactivity of addition, elimination, rearrangement and reduction with stereoselective and stereospecific reactions.			Analyse

M.ScII Organic Chemistry Pape		_	nthetic Organic istry –I	Sem-I	II
	Course Code - PSC3SOC Course Coordinator - Dr. J.G. Pa				
COs.	After completing the course students will be able to:				
CO 1	Summarize generation, stability, structure, stereochemical aspects of free radicals, its characteristic reactions and use in organic synthesis.				
CO 2	Explain preparation of organometallic compound, its applications, mechanism and regiochemistry of reactions involving metals/non-metals in organic synthesis.				Understand
CO 3	Compare between enamines and enolates, methods of preparation, applications with stereochemical aspects in synthetic reactions			Analyse	
CO 4	Predict the products of name reactions, domino reactions, click reactions, multicomponent reactions and describe the mechanisms showing how the products are formed			Create	

M Sc -II Organic Chemistry Heterocyclic		ntural products chemistry and oscopy-I	Sem-II	1	
Course Code - PSC3NPHS Course Coordinator- 1			ordinator- Dr. D. l	K. Patil	
COs. No.	After completing the course students will be able to:				
CO 1	Explain the occurrence, multistep synthesis of n		res, and biological	importance and	Understand
CO 2	Draw conclusion based on evidence for structure elucidation and synthesis of natural products.			ion and synthesis	Analysis
CO 3	Construct the names of heterocyclic compounds by IUPAC nomenclature and explain synthesis and reactivity of heterocyclic compounds			Analysis	
CO 4	Interpret the data for the structure elucidation of organic compounds based on UV, IR, ¹ H-NMR and ¹³ C-NMR.			Evaluate	

			edicinal, Biogenesis een Chemistry	Sem-	·III
	Course Code - PSC3MBG Course Coordinator- Ms. P.A.				
COs. No.	After completing the course, students will be able to:				
CO 1		ce to a range of	welve principles of gr workplace for a safer	•	Understand
CO 2	Explain the basic terms used in medicinal chemistry, the pharmacokinetics of drug, drug structure activity relationship, physical chemical parameters of drugs and procedures in drug design.				Understand
CO 3	Apply skills required for drug design, development of modern methods of synthesis required for employment in the pharmaceutical industries.			Apply	
CO 4	Build the Biogenesis a pathway, shikimate pa	-	of natural products by alonate it pathway.	acetate	Apply

*		V- Bioorganic hemistry	Sem-II	I	
Course Code - PSC3BIC			Course Coo	ordinator- Ms. P.A.	. Patil
COs.	After completing the course students will be able to:				
CO 1	Summarize amino aci synthesis of oligonucl		proteins and nucleic	acids and chemical	Understand
CO 2	Explain importance of enzymatic reactions and factors affecting enzyme kinetics.			Understand	
CO 3	Relate the importance of enzymes in the synthesis of organic compound.			Understand	
CO 4	Explain biological im	portance and	metabolism of carbol	hydrates and lipids.	Evaluate

Semester-III Practical

M.ScII	M.ScII Organic Chemistry Ternary Mixture (Practical) Sem-II		I			
	Course Code: PSC3	ГОР0	Course Coor	dinator:	Ms. S. A	. Shaikh
COs. No.	COs. After completing the course students will be able to:			Bloom Taxonomy Level (BTL)		
CO 1	Identify the chemical type of components present the in ternary mixture oforganic compounds.				Apply	
CO 2	11 4	*	Apply skills in detection, identification and separation of organic compounds of ternary mixtures by microscale technique.			Apply

M Sc - Organic Chemistry			ntion of organic nds (Practical)		1
	Course Code: PSC3	SOP0	Course Coordinator: Ms. S. A. Shaikh		
COs.	After completing the course students will be able to			Bloom Taxonomy Level (BTL)	
CO 1	CO 1 Identify the chemical type of components present the in ternary mixture oforganic compounds.			Apply	
CO 2	Demonstrate the practical aspects in the preparation of the organic compounds and their derivatives			Understand	

M Sc - Organic Chemistry		preparation ctical)	Sem-II	I	
Course Code : PSC3NPP0 & (PSC3MBP0 or PSC3BIP0)		Course Coordinator: Ms. S. A.		A. Shaikh	
COs. No.	After completing the course students will be able to:				Bloom Taxonomy Level (BTL)
CO1	Demonstrate the skills in organic preparations required for pursuing acareer in the pharmaceutical, chemical industry, research etc.				Understand
CO2	Make use of column chromatography, crystallization steam and vacuum distillation for purification of the organic compounds			Apply	
CO3	Identify the prepared	d organic compo	unds by Thin Laye	er Chromatography	Apply

Semester IV

_		_	oretical Organic nistry-II Sem-IV		V
	Course Code – PSC4TOC Course Coordinator- Prof. Dr. V			V. D. Patil	
COs. No.	After completing the course, students will be able to:			Bloom Taxonomy Level (BTL)	
CO1	Explain the principles of molecular association and organization, host- guest interaction, structure and properties of crown ether, cryptands, cyclophanes, rotaxanes, cyclodextrines, molecular self-assembly and Supramolecular polymers			Understand	
CO2	Explain principles, methods of asymmetric synthesis and use of chiral auxiliaries in asymmetric synthesis			Understand	
CO3	Apply the linear free energy relationship for determination of organic reaction mechanism using Hammett equation and Taft equation.			Apply	
CO4	Determine the enantiomer and diastereomer composition by different methods, asymmetric transformation, molecular dissymmetry and chiroptical properties and explain the ORD and CD curves, Cotton effects, octane rule and its applications.			Evaluate	

		nthetic Organic istry –II	Sem-IV		
	Course Code – PSC4SOC Course Coordinator- Dr. J.G. Parga				
COs. No.	After completing the course-students will be able to:				
CO1	Explain the concepts of retrosynthesis, protecting groups, synthetic planning and selective transformations in organic synthesis.				
CO2	Apply disconnection approach, FGI, FGA, FGR and recognize starting compounds in designing organic synthesis of target molecules.				Apply
CO3	Summarize electro-organic chemistry and use of organocatalyst, Lewis acid, crown ethers, cryptands, micelles etc. in selected methods of organic synthesis.			Understand	
CO4	Predict the products of or metals are used.	rganic synthesis	in which transition	n and rare earth	Create

M Sc -II Organic Chemistry Heterocyclic o		ntural products chemistry and roscopy	Sem-I	V	
Course Code - PSC4NPHS			Course Co	ordinator- Dr. D. l	K. Patil
COs. No.	After completing the course, students will be able to:				
CO1	Explain occurrence, classification, structural and stereochemical features of steroids, insect pheromones, insecticides, vitamins and their biological role in life related processes.				
CO2	Plan the synthesis of be insecticides.	Apply			
CO3	Apply fundamentals of heterocyclic reactivity and synthesis skills required for heterocyclic compounds in research and industry and explain the names of heterocycliccompounds by IUPAC nomenclature and replacement nomenclature.				Apply
CO4	Interpret the data for the structure elucidation of organic compounds based on UV, IR, ¹ H-NMR, ¹³ C-NMR two dimensional spectroscopic techniques, COSY and HETCOR spectra, NOE and NOESY, INEPT, APT and INADEQUATE techniques.			Evaluate	

		-	tellectual Property Cheminformatics	Sem-IV	
Course Code - PSC4IPR Course Coordinator- Ms			nator- Ms. P.A	A. Patil	
COs.	After completing the course-students will be able to:				
CO1	Define various terminologies related to IPR				Remember
CO2	Explain the role of law in the violation of IPR			Understand	
CO3	Summarise the various models of cheminformatics.			Understand	
CO4	Apply the knowledge compounds, structures		tics to predict the propning.	erties of	Apply

M.Scl	II Organic Chemistry	Paper IV- R	Research Methodology	Sem-	IV
	Course Code - PSC4RMT Course Coordinator- Ms. P.A. 1				
COs.	After completing the course students will be able to:				
CO1	Explain the importance gap analysis and data	Understand			
CO2	Design/propose methor conduct research	Create			
CO3	Anayze scientific data by statistical and graphical methods.			Analyse	
CO4	Apply skills of c	hemical safet	y & ethical handling of	chemicals	Apply

Semester-IV (Practical)

M.ScII Organic Chemistry		Two step preparation (Practical)		Sem-IV	
Course	Code: PSC4TOP0 &	k PSC4SOP0	Course Co	ordinator: Ms. P.A	A. Patil
COs. No.	After completing the course students will be able to:				Bloom Taxonomy Level (BTL)
CO1	Plan the synthesis of organic compounds.				Apply
CO2	Make use of thin layer chromatography and physical constant to know thepurity of organic compounds			Apply	
CO3	Apply principles of purification techniques such as recrystallization and distillation for purification of organic compounds.			Analyse	
CO4	Compare spectral da ofreactions and MSI		-	plain mechanism	Apply

M.ScII		fication &Project ernship	Sem-IV	7	
Course C	Course Code: PSC4NPP0 & (PSC4IPP0 or PSC4RMP0) Course Coordinator: Dr. J. M.				
COs.	After completing the course, studen	ts will be able to:		Bloom Taxonomy Level (BTL)	
CO1	CO1 Interpret spectral data like FT-IR, ¹³ C NMR, ¹ HNMR, UV-Visible spectrum and Mass spectrum for structure elucidation of organic compound			Evaluate	
CO2	Analyze the print and digital resources critically to formulate the researchproblem, argue and justify the statements			Analyse	
CO3	Apply the existing methodologies or develop a new methodology to address the research problem			Apply	
CO4	Interpret the results and structures it andoral presentation by following etl		via dissertation,	Evaluate	