

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: B. Sc. in Chemistry

Program: Bachelor's in Science (B. Sc.)

B.Sc. in Chemistry

Syllabus for F.Y.B.Sc. (Chemistry)

Semester I & II

(Approved in the Academic council meeting held on 13th June 2024)

w. e. f. Academic Year 2024-25

Programme Outcomes

S. N.	After completion of B.Sc. program students will acquire	Graduate Attribute
PO1	The knowledge of the disciplines and in-depth	Disciplinary
	and extensive knowledge, understanding and	knowledge
	skills in a specific field of interest.	
PO2	An ability to develop and conduct experiments,	Scientific reasoning
	analyze, and interpret data and use scientific	
	judgment to draw conclusions	
PO3	An ability to use current technology, and modern	Digital literacy
	tools necessary for creation, analysis,	
	dissemination of information.	
PO4	Innovative, professional, and entrepreneurial	Life-long learning
	skills needed in various disciplines of science.	
PO5	An ability to achieve high order communication	Communication
	skills.	skills
PO6	An ability to collect, analyze and evaluate	Problem solving
	information and ideas and apply them in problem	
	solving using conventional as well as modern	
	approaches	
PO7	A sense of social responsibility; intellectual and	Reflective thinking
	practical skills and demonstration of ability to	
	apply it in real-world settings.	
PO8	An ability to engage in independent and life-long	Life-long learning
	learning through openness, curiosity, and a desire	
	to meet new challenges.	
PO9	A capacity to relate, collaborate, and lead others,	Teamwork
	and to exchange views and ideas to work in a	
	team to achieve desired outcomes	
PO10	An ability to function effectively as an	Leadership
	individual, and as a member or leader in diverse	
	teams, and in multidisciplinary settings.	
PO11	An ability to understanding values, ethics, and	Moral and ethical
	morality in a multidisciplinary context.	awareness

Preamble:

Bachelor of Science (B.Sc.) in Chemistry is an undergraduate course of Department of Chemistry, Changu Kana Thakur Arts, Commerce & Science College, New Panvel (Autonomous). The Choice Based Credit System to be implemented through this curriculum would help the students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities.

This syllabus is prepared to give the sound knowledge and understanding of chemistry to undergraduate students at first year of the B.Sc. degree course. The goal of the syllabus is to make the study of Chemistry as stimulating, interesting and relevant as possible. The syllabus is prepared by keeping in mind the aim to make students capable of studying Chemistry in academic and industrial courses. Also to expose the students and to develop interest in them in various fields of Chemistry.

The new and updated syllabus is based on disciplinary approach with vigour and depth taking care of the syllabus is not heavy at the same time it is comparable to the syllabi of other universities at the same level. The students pursuing this course would have to develop understanding of various aspects of the chemistry. The conceptual understanding, development of experimental skills, developing the aptitude for academic and professional skills, obtaining basic ideas and understanding of hyphenated techniques, understanding the fundamental chemical processes and rationale towards application of knowledgeare among such important aspects.

Course Description (Theory)	Discipline Specific Course (DSC)
Semester	Ι
Course Name	Chemistry – I
Course Code	USC1CH1
Eligibility for Course	12 th Science of all recognized Board
Credit	03
Hours	45

Course Objectives

- To construct and apply knowledge of chemistry, and appreciate the relationship between Chemistry and other disciplines.
- > To promote understanding of basic facts and concepts in Chemistry while retaining the excitement of Chemistry.
- To enable students to understand Chemistry and its Industrial and Social Context.

Course Outcomes:

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Recall thermodynamics terms, the first law of thermodynamics and terms like normality, molarity.	Remember
CO2	Solve the Numerical problems based on the Concentration of solutions	Apply
CO3	Classify the elements according to electronic configuration and explain details of periodic trends and atomic structure.	Understand
CO 4	Explain the name, bonding, structure and bond fission of organic compounds.	Evaluating

Unit	Course Description	Hrs
1.	Physical Chemistry	15
	1.1 Chemical Thermodynamics: (10L)	
	Thermodynamic terms: System, surrounding, boundaries, open, closed and	
	isolated system, intensive and extensive properties, state functions and path	
	functions, zeroth law of thermodynamics First law of thermodynamics: concept	
	of heat (q), work (w), internal energy (U), statement of first law, enthalpy,	
	relation between heat capacities, calculations of heat (q), work (w), internal	
	energy (U) and enthalpy (H) (Numericals expected)	
	Second law of thermodynamics and its different statements. Carnot's cycle, its	
	efficiency and Carnot's Theorem (Heat engine) Concepts of entropy and free	
	energy, spontaneity and physical significance of free energy.	
	1.2 Chemical Calculations: (5L)	
	Expressing concentration of solutions: Normality, molality, molarity, formality, mole fractions, weight ratio, volume ratio, weight to volume ratio, ppm, ppb, millimoles, milliequivalents (Numericals expected)	
2	Inorganic Chemistry	15
	2.1 Atomic structure: (10L)	
	(Qualitative treatment only; it is expected that the learner knows the	
	mathematical statements and understands their physical significance after	
	completing this topic. No derivations of the mathematical equations required)	
	1. a) Historical perspectives of the atomic structure; Rutherford's Atomic	
	Model, Bohr's theory, its limitations and atomic spectrum of hydrogen atom.	
	Structure of hydrogen atom.	
	b) Hydrogenic atoms: Simple principles of quantum mechanics;	
	2. Atomic orbitals	
	i) Hydrogenic energy levels	
	ii) Shells, subshells and orbitals	
	iii) Electron spin	
	iv) Radial shapes of orbitals	
	v) Radial distribution function	
	vi) Angular shapes of orbitals	

	3. Many Electron Atoms	
	i) Penetration and shielding	
	ii) Effective nuclear charge	
	4. Electrons filling rules in various orbitals:	
	a) Aufbau principle	
	b) Hund's rule of maximum multiplicity	
	c) Pauli's exclusion principle	
	2.2 Periodic Table and Periodicity (5L)	
	Long form of Periodic Table; Classification for elements as main group, transition and inner transition elements; Periodicity in the following properties: Atomic and ionic size; electron gain enthalpy; ionization enthalpy, effective nuclear charge (Slater's rule); electronegativity; Pauling, Mulliken and Alred Rochow electronegativities (Numerical problems expected, wherever applicable.)	
3.	Basics of Organic Chemistry	15
	3.1 Introduction, General properties and applications of organic compounds in every days life (1L)	
	3.2 Classification and Nomenclature of organic compounds: (4L)	
	Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi- functional aliphatic compounds on the basis of priority order of the following classes of compounds:	
	alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues	
	3.3 Bonding and Structure of Organic compounds(4L)	
	Hybridization: sp^3 , sp^2 , sp hybridization of carbon and nitrogen; sp^3 and sp^2 hybridizations of oxygen in organic compounds (alcohol, aldehyde, ketone, carboxylic acid)	
	Shapes of molecules; Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne)	
	3.4 Fundamentals of organic reaction mechanism: (4L)	
	Electronic Effects: Inductive, electromeric, resonance and mesomeric effects,	

hyperconjugation and their applications; Dipole moment.
Bond fission: Homolytic and Heterolytic fission with suitable examples. Electrophiles and Nucleophiles.
Types (primary, secondary, tertiary, allyl, benzyl) and their relative stability of reactive intermediates: Carbocations, Carbanions and Free radicals.
3.5 Introduction to polymer chemistry: (2L)
Introduction, Basic concept, Classification of polymers, Properties of polymers, applications of polymers.

Course Description (Theory)	DSC Practical
Semester	Ι
Course Name	Chemistry Practical
Course Code	USC1CHP
Eligibility for Course	12 th Science of all recognized Board
Credit	01
Hours	30

Course Objectives

- To develop the practical skills in the students regarding the preparation of chemical solutions.
- > To build the knowledge of important reagents, practical techniques in the students.
- > To develop the knowledge of handlings chemical instruments used in the laboratory.

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO 1	Find exact concentrations of the solutions and enthalpy of dissolution.	Remember
CO 2	Apply chemical kinetics law to calculate the rate constant of the reaction.	Apply
CO 3	Find the normality of the acids and bases and purity of the samples gravimetrically.	Remember
CO 4	Apply Thin Layer Chromatography (TLC) ,Distillation, Recrystallization, sublimation methods for separation of mixtures.	Apply

Course Description	Hı
Physical chemistry	30
 Standardization of solutions of two different concentration of KOH by using 0.1 N oxalic acid solution. To determine the rate constant for the hydrolysis of ester using HCl as catalyst To determine enthalpy of dissolution of salt (like KNO3) Preparation of different normal and molar solutions (at least two). Inorganic chemistry 	
1. Commercial analysis of	
a) Mineral acid–Sulphuric acid b) Organic acid	
2. Titration using double indicator: analysis of solution of Na2CO3 and NaHCO3.	
3. To determine the percent purity of sample of BaSO4 containing NH4Cl by gravimetrically.	
4) To determine the percentage purity of given sample of ascorbic acid .	
Organic Chemistry	
I] Purification of Organic Compound compounds by	
1. Recrystallization (02) (Benzoic acid, Acetanilide)	
2. Sublimation (01) Phthalic anhydride to Phthalic acid	
3. Distillation. (01)	
(Recording of M.P. & B.P.)	
Learners are expected to report	
a) Solvent for recrystallization.	
b) Mass and the M.P. & B.P. of purified compound.	
Learners should calibrate thermometer before determining melting point	
II] Chromatography	
Separation of a mixture of o-and p-nitrophenols by thin layer chromatography (TLC)	

Course Description (Theory)	Skill Enhancement Course-I		
Semester	Ι		
Course Name	Practical's in Techniques in		
	Environmental Analysis-I		
Course Code USEC1TEP			
Eligibility for Course	12 th Science of all recognized Board		
Credit	02		
Hours	60		

Course Objectives :

The objective of the course is to develop a basic understanding of water qualities and ability to use principles of water chemistry for water treatment and water quality control in the natural systems

Course Outcomes :

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Find the p ^H , Acidity, Alkalinity of the given water samples.	Find
CO2	Analyse the solid pollutant present in the water samples.	Analysing
CO3	Determine the total hardness and purity of the given water samples.	Evaluating

Course Description	Hrs
Analysis of Water	60
1 Water analysis: Sampling techniques for water analysis.	
2. Determination of conductivity using Conductometer.	
3. Determination of pH of Water using pH meter (electrometrically)	
4. Determination of the acidity and alkalinity of water samp titrimetrically.	ple
5. Determination of carbonate and bicarbonate of water sample.	
6. Determination of chloride ions present in water sample.	
7. Determination of nitrate present in given water sample.	
8. Determination of dissolved oxygen (DO) in water sample usin Winkler's (azide modification) method.	ng
9. Analysis of solids present in water: suspended solids and dissolve solids.	ed
10. Determination of sulphate present in given water sample.	
11. Analysis of metals present in water: Fe and M spectrophotometrically.	An
12. Determine the total hardness of given water samples (concentrations	5

of Ca^{2+} and Mg^{2+})	

References :

Practicals:

 APHA, Standard Methods for the Examination of Water, Sewage and Industrial Wastes. 20th Ed., American Public Health Association: Washington, USA (1995).

Course Description	Discipline Specific Course (DSC)
Semester	П
Course Name	Chemistry – II
Course Code	USC2CH2
Eligibility for Course	12 th Science of all recognized Board
Credit	03
Hours	45

Course Objectives

- To expose the students to various emerging new areas of Chemistry and apprise them with their prevalent in their future studies and their applications in variousspheres of chemical sciences.
- > To familiar students with chemistry of main group elements.
- To do the comparative study of carbides, nitrides, oxides and hydrides of group 1 and group 2 elements and some important compounds.
- > To aware the students with important class of organic compounds with applications.

Course Outcomes

COs. No.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO 1	Explain the rules of integration, derivatives.	Apply
CO 2	Outline the metallic and non-metallic nature, oxidation states, electronegativity, Anomalous behaviour and allotropy of main group elements.	Understand
CO 3	Explain the reactivity of group 1 and group 2 elements and the effects of Oxides of carbon, sulfur and nitrogen on the environment.	Understand
CO 4	Define surface tension, Viscosity, Refractive index of Liquid, Order of reaction.	Remember

UNIT	Course Description	
1	Physical Chemistry	
	1.1 Chemical Kinetics: (7L)	
	Rate of reaction, rate constant, measurement of reaction rates, order and	
	molecularity of reaction, integrated rate equation of first and second order	
	reactions (with equal and unequal initial concentration of reactants) (Numericals	
	expected) Determination of order of reaction by (a) Integration method (b)	
	Graphical method	
	(c) Ostwald's isolation method	
	(d) Half time method (Numericals expected)	
	1.2 Mathematical Concept in Chemistry: (8L)	
	Graphical representation of equations: Rules for drawing graph co-ordinates etc.,	
	Equation of straight line, slope and intercept, plotting the graph from the data of	
	chemical properties and problems.	
	Derivative: Rules of differentiation (without proof), Algebraic, Logarithmic and	
	exponential functions and numerical. Integration: rules of integration (without	
	proof), Integration with limit,	
	Algebraic, Logarithmic and exponential functions and numerical.	
	Numerical related to Chemistry	
2	Inorganic Chemistry	15
	2.1 Comparative Chemistry of Main Group Elements: (10L)	
	Metallic and non-metallic nature, oxidation states, electronegativity, anomalous	
	behaviour of second period elements, allotropy, catenation, diagonal	
	relationship. Comparative chemistry of carbides, nitrides, oxides and hydroxides	
	of group I and group II elements.	
	Some important compounds- NaHCO3, Na2CO3, NaCl, NaOH, CaO, CaCO3	
	2.2 Chemistry of Noble Gases (5 L)	
	1. Physical properties	
	2. Chemical properties	
	3. Clathrate compounds	

3	Organic Chemistry	15
	Stereochemistry: (15)	
	Classification of isomer, IUPAC nomenclature of stereoisomers.	
	Fischer Projection, Newman and Sawhorse Projection formulae (of erythro,	
	threo isomers of tartaric acid and 2,3 dichlorobutane) and their interconversions;	
	Geometrical isomerism in alkene and cycloalkanes: cis-trans and syn-anti	
	isomerism E/Z notations with C.I.P. rules.	
	Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry,	
	Enantiomers,	
	Molecules with two similar and dissimilar chiral-centres, Distereoisomers, meso	
	structures, racemic mixture and resolution (methods of resolution not expected).	
	Relative and absolute configuration: D/L and R/S designations.	
	Conformation analysis of alkanes (ethane, propane and n-butane); Relative	
	stability with energy diagrams.	

Course Description	DSC Practical
Semester	Ш
Course Name	Chemistry Practical
Course Code	USC2CHP
Eligibility for Course	12 th Science of all recognized Board
Credit	01
Hours	30

Course Objectives

- > To develop practical skills of identification of organic compounds.
- > To identify the compounds by performing chemical tests.
- > To develop the skills of titrations in the students.

Course Outcomes

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO 1	Apply chemical kinetics law to calculate the rate constant of reaction.	Apply
CO 2	Make use of colorimeter and pH meter.	Apply
CO 3	Identify organic compound containing C,H (O) N, S, X elements.	Apply
CO 4	Identify cations and anions from the given mixture of compounds and percentage of metal present in the sample by titration.	Apply

Course Description	Hrs
Physical Chemistry	30
1. Determination of viscosity of given liquid by viscometer.	
2. To determine dissociation constant of weak acid (Ka) using Henderson's	
equation and the method of incomplete titration pH metrically.	
3. To verify Beer-Lambert's law, using KMnO ₄ solution by colorimetric method.	
4. To standardize commercial sample of HCl using borax and to write material safety data of the chemicals involved.	
Inorganic Chemistry	
1. Qualitative analysis: (at least 3 mixtures to be analyzed)	
Semi-micro inorganic qualitative analysis of a sample containing two cations and	
Cations (from amongst):	
$Ba^{2+} Ca^{2+} Sr^{2+} Cu^{2+} Cd^{2+} Ee^{2+} Ni^{2+} Mn^{2+} Mn^{2+} Al^{3+} Cr^{3+} K^+ NHA^+$	
Anions (From amongst): CO_{2}^{2} S ² SO ₂ ² NO ₂ NO ₂	
Allois (110in alloigst). CO_3^3 , S_1^3 , SO_2^3 , NO_2^3 , NO_3^3	
(Scheme of analysis should avoid use of sulphide ion in any form for Precipitation	
/ separation of cations)	
2 Deday Titration	
2. KCU0X 110/2001.	
1. To determine the percentage of copper(II) present in a given sample by titration	

against a standard aqueous solution of sodium thiosulfate (iodometry titration)	
2 Estimation of available chlorine in bleaching powder iodometrically.	
Organic Chemistry	
Characterization of monofunctional organic compound (solid, liquid) containing	
C, H, (O), N, S, X elements. (minimum 4 compounds)	
Characteristic Reactions of following Test	
1. Test for unsaturation (KMnO4 and bromine water)	
2. Test for acid 3) Test for phenol	
4) Test for base 5) Test for nitrogen	
6) Test for sulphur	
7) Test for halogens	
8. Functional groups test	
A) Alcohols	
B) Aldehyde and ketone	
C) Esters	
D) Primary aromatic amines F) Phenol	
E) Nitro/Dinitro G) Amide	

References:

Theory-

1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th

Ed., OxfordUniversity 12 Press (2014).

- 2. Ball D.W., Physical Chemistry, Thomson Press, India (2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa (2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson (2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press(2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt.Ltd.,New Delhi (2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill (2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series (2006).
- 10. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed.,

Tata McGrawHill (1994).

- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).
- 13. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- 15. Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning IndiaEdition, 2002.
- Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)Pvt Ltd. (Pearson Education).2012
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 20. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.
- 22. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

Course Description (Theory)	Skill Enhancement Course-II	
Semester	Π	
Course Name	Practical's in Techniques in Environmental	
	Analysis-II	
Course Code	USEC2TEP	
Eligibility for Course	12 th Science of all recognized Board	
Credit	02	
Hours	60	

Course Objectives:

The course objective is to train the students to acquire various practical skills required for soil analysis.

Course Outcomes :

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Identify the quality of soil of the surroundings.	Apply
CO2	Develop the environmental control plan for environment pollution problem.	Apply
CO3	Classify the various samples of soil according to their purity.	Understanding
CO4	Discover the various components of soil.	Analyze

Unit	Course Description	Hrs
Ι	1. Determination of total organic matter and moisture content of soil.	60
	2. Determination of pH value of different types of soil.	
	3. Determination of water holding capacity of soil.	
	4. Determination of mechanical composition of soil by Pipette method.	
	5. Determination of SAR value of soil.(Sodium Absorption Ratio.)	
	6. Determination of available phosphorous from the soil sample.	
	7. Determination of available Calcium carbonate from the soil sample.	
	8. Determination of electrical conductivity of the soil sample by using	
	Electrical conductivity meter.	
	9) Preparation of soil health card.	
	10) Determination of Gypsum requirement of the soil.	
	11) Estimation of Calcium and Magnesium ions by complexometric	
	titration.	
	12) Determination of bulk density and particle density of the soil sample.	
	13) Determination of chlorides in the given soil sample.	
	14) Determination of sulphates in the given soil sample.	
	15) Determination of Nitrate content in the given soil sample.	
Refere	nces :	

1. Soil and air analysis by S.K. Maiti.

- A comprehensive laboratory manual for Environmental Sciences and Engineering By P.R. Sreemahadevan Pillai. New Age International Publishers.
- 3. Chemical and biological methods for water pollution studies By R.K. Trivedi.
- 4. Introduction to soil laboratory manual-J.J.Harset stipes.
- 5. Introduction to soil science laboratory manual, Palmer and troch-Lowa state.
- Sarkar, D.; Haldar, A. Physical and Chemical Methods in Soil Analysis, 2nd Ed., New Age International (2010).
- Saha, A. K. Methods of Physical and Chemical Analysis of Soil, Kalyani Publishers (2008).

Environmental Studies

Sr. No.	Heading	Particulars
1	Title of Course	Environmental Studies (VEC)
2	Eligibility for Admission	12 th Arts/Commerce/ Science of all recognised Board
3	Passing marks	40 %
4	Ordinances/Regulations (if any)	
5	No. of Semesters	Two
6	Level	U.G.
7	Pattern	Semester (60:40)
8	Status	Revised
9	To be implemented from Academic year	2023-24
10	Credits	02

Preamble of the Syllabus:

The college has implemented the National Education Policy 2020 from the Academic Year 2023-24. Under Value Education Course (VEC) department offers Environmental Studies at F.Y.B.A. / B.Com/B.Sc. /B.M.S. classes at first year of under graduation level program. This course is designed to procure awareness among the learners about the environment as a whole and its related problems. The syllabus is prepared to give the sound knowledge and understanding of environment to undergraduate students at first year of the degree course in Arts, Commerce and Science faculty. The content of syllabus is prepared to make the students capable to understand the relation between the environment and the commercial activities. Also to create an insight into various environmental issues at global, national and regional level and measures for environmental conservation. This course will cultivate a sense of awareness among learners on the need to conserve our environment.

Objectives of the course:

- 1. To demonstrate and analyse knowledge of the facts and processes of environment.
- 2. To make aware students about various environmental factors and its relation to the field of Commerce.
- 3. To highlight functional and spatial links between environment, economy and society.
- 4. To create an environmental awareness among the students.
- 5. To create an insight into various environmental issues at global, national and regional level and measures for environmental conservation.

Revised Syllabus w.e.f. Academic Year, 2023-24 (CBSGS) Semester: - I - F.Y.B.Sc. Environmental Studies

Outcome of the course:

Value	Course: Environmental Studies	Credits- 02
Education	Course Code: (UVEC1EVS)	
Course		
(VEC)		
After compl	eting the course, student will be able to:	Bloom Taxonomy
		Level
CO 1	Understand comprehensibly the concept of	II-
	environment and ecosystem.	Understanding
CO 2	Discuss the Man-Environmental Interaction	II- Discussion
CO 3	Understand the need the biodiversity and its	III- Applying
	conservation.	IV- Analysing
CO 4	Understanding and analysing the causes, effects and	II-
	measures of pollution	Understanding
		IV- Analyzing

VEC- Environmental Studies Syllabus, w.e.f. 2023-24 Revised Syllabus:

University of Mumbai

Changu Kana Thakur A.C.S. College, New Panvel (Autonomous) Revised Syllabus as per NEP 2020 w.e.f. Academic Year, 2023-24 (CBSGS) F.Y.B.A/B.Com./B.Sc./B.M.S. (Semester- I)

Value Education Course (VEC) - Environmental Studies-I

COURSE CODE: UVES1EVS

Credit- 2

Unit No	Title of the Unit			
UNIT-I	Envir	Environment and Ecosystem		
	1.1	Environment: Definition, Factors and Types of		
		Environment		
	1.2	Ecosystem: Elements, Types, Structure and Function		
	1.3	Man-Environmental Interaction		
	1.4	Significance of Environmental Studies.		
UNIT-II	Biodiv	versity, its conservation and Pollution	15	
	2.1	Biodiversity : Definition, Types and value of		
		Biodiversity		
	2.2	Threats of biodiversity and conservation of biodiversity		
	2.3	Hotspots of biodiversity in world and India		
	2.4	Pollution : Air, Water, Land and Noise – Causes, effects		
		and measures		

Revised Syllabus w.e.f. Academic Year, 2023-24 (CBCS)

Semester: - II - F.Y.B.Sc. Environmental Studies

Outcome of the course:

Value	Course: Environmental Studies	Credits- 02
Education	Course Code: (UVEC2EVS)	
Course		
(VEC)		
After comp	leting the course, student will be able to:	Bloom Taxonomy
_		Level
CO 1	Gain a comprehensive knowledge of climate change,	II- Understanding
	its science and response measures	V- Evaluating
	I I I I I I I I I I I I I I I I I I I	
CO 2	Understand the sources of waste and waste	II- Understanding
	management	III- Applying
CO 3	Develop a critical understanding of the complexity of	II- Understanding
	environmental management.	V- Evaluating
CO 4	Explain sustainable development, its goals, targets,	II- Understanding
	challenges and global strategies for sustainable	8
	develonment	
CO 5	Learn about the major international tractice and our	II Understanding
005	Learn about the major international treaties and our	11- Understanding
	country's stand on and	
	responses to the major international agreements.	

Revised Syllabus:

University of Mumbai

Changu Kana Thakur A.C.S. College, New Panvel (Autonomous)

Revised Syllabus as per NEP 2020 w.e.f. Academic Year, 2023-24 (CBSGS)

F.Y.B.A/B.Com./B.Sc./B.M.S (Semester- II)

Value Education Course (VEC) - Environmental Studies-II

COURSE CODE: UVES1EVS

Credit- 2

Unit No		Title of the Unit	Hours	
UNIT-I	Clima	Climate Change and Waste management		
	1.1	Climate Change: Concept, Global warming, Global		
		Climatic Assessment -IPCC		
	1.2	Impact of climate change and mitigation : Agriculture		
		and water, flora and fauna, Human health and		
		mitigation plan		
	1.3	Waste: Sources and Types,		
	1.4	Waste management: Methods in World and India		
UNIT-II	Envir	onmental Management and Sustainable Development	15	
	2.1	Environmental Management: Concept, need and		
		relevance		
	2.2	Environmental Audit and Impact Assessment and		
		Movements		
	2.3	Sustainable Development: Concept, Goals, challenges		
		and Strategies		
	2.4	Environmental Treaties and Legislation		

Reference Books:

- 1. Asolekar S, Gopichandran R. 2005, 'Preventive Environmental Management an Indian perspective', CEE, Ahmedabad, Foundation Books Pvt Ltd, Daryaganj
- 2. Bharucha Erich, 2005, University Press, Himayat nagar, Hyderabad
- 3. Chambers N., Simons C., Wackernagel M., 2006, 'Sharing Nature's Interest Ecological footprints as an indicator of sustainability'.
- 4. Dresner S., 2005, 'The principles of sustainability', Earthscan publication Ltd, London.
- 5. Gandotra V., Patel S., 2008, 'Environmental problems and strategies', Serials Publication, New Delhi
- 6. Hulse J. H., 2007, 'Sustainable Development at risk Ignoring the past', Cambridge University Press India Pvt Ltd., New Delhi.

VEC- Environmental Studies Syllabus, w.e.f. 2023-24

- IPCC (2014): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- 8. IPCC (2007): Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
- 9. Mohanta R., Sen A., Singh M.P., 2009, 'Environmental Education Vol. 1', APH publishing Corporation New Delhi.
- 10. OECD (2008): Climate Change Mitigation: "What do we do?" (Organisation and Economic Co-operation and Development).
- 11. Perumal M., Veerasekaran R., Suresh M., Asaithambi M., 2008, 'Environmental and Ecological issues in India', Abhijeet Publication, Delhi
- 12. Prabu P.C., Udayasooriyan C., Balasubramanian G, 2009, 'An introduction to Ecology and Environmental Science', Avinash Paperbacks, New Delhi.
- 13. Rajgopalan R., 2005, 'Environmental Studies from crisis to cure', Oxford University press, New Delhi.
- 14. Reddy K. P., Reddy D. N., 2003, 'Environmental Education', Neelkanth Publication, Hyderabad.
- 15. Santra S.C., 2004, 'Environmental Science', New Central Book agency Pvt Ltd, Kolkata.
- 16. Saxena H.M., 2000, 'Environmental Management', Rawat Publication, New Delhi, pp.
- 17. Sen, Roy, S., and Singh, R.B., (2002): Climate Variability, Extreme Events and Agricultural Productivity in Mountain Regions, Oxford & IBH Pub., New Delhi.
- 18. Singh, M., Singh, R.B., and Hassan, M.I., (Eds.) (2014): Climate change and biodiversity, Proceedings of IGU Rohtak Conference, Volume 1. Advances in Geographical and Environmental Studies, Springer
- 19. Singh, R.B., Mal, Suraj, and Huggel, Christian (2018): Climate Change, Extreme Events and Disaster Risk Reduction, Springer, Switzerland, pages 309.
- 20. Sinha S. P., Falguni R., Prasad M., Nanghia H.R., 1993, 'Instant Encyclopaedia of Geography', Mittal Publication, New Delhi.
- 21. Sudhir M.A., Alankara M. M., 2003, 'Environmental issues', Reliance publishing house, New Delhi.
- 22. Swarup R.S., Mishra S.N., Juahari V.P, 1992, 'Encyclopaedia of Ecology, environment and pollution control 20', Mittal publication, New Delhi
- 23. Tiwari V., 2009, 'A textbook of Environmental studies', Himalaya Publications House, New Delhi
- 24. Tomar A., 2007, 'Environmental Education', Kalpaz publication, New Delhi
- 25. Uberoi N.K., 2007, 'Environmental Management', Excel Books, New Delhi
- 26. UNEP (2007): Global Environment Outlook: GEO4: Environment for Development, United Nations Environment Programme.
- 27. William M., Grossa J., 2002, 'Environmental Geography Science, Land use and Earth Systems', John Wiley and Sons Inc USA.
- 28. Wright R., 2008, 'Environmental Science Towards sustainable future', Eastern Economy Edition, Prentice hall Inc, New Jersey, U.S.A
- 29. Narkhede, Parmar and Mohite, 2022, 'Environmental Studies' Sheth Publishers Pvt.ltd. Mumbai.

VEC- Environmental Studies Syllabus, w.e.f. 2023-2430. परमार ,देवरे ,बुटाला २०१३ पर्यावरण' भूगोलहिमालय, ' पब्लीशिंग हाउस ,मुंबई.31. परमार ,बोरसे व इतर २०२२पर्यावरण' , भूगोलहिमालय ' पब्लीशिंग हाउस .मुंबई,32. घारपुरेपर्यावरण' , , भूगोल ,पिंपळापुरे पब्लीशर्स 'नागपूर.

Janardan Bhagat Shikshan Prasarak Sanstha's CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: B. Sc. in Chemistry

SYLLABUS (Approved in the Academic Council Meeting held on 27/06/2024)

S.Y.B.Sc. Chemistry

According to National Education Policy -2020

w.e.f. Academic Year 2024-25

NEP-2020

BACHELOR'S IN SCIENCE (B. Sc.)

Janardan Bhagat Shikshan Prasarak Sanstha's

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

Re-accredited A+ Grade by NAAC 'College with Potential for Excellence 'Status Awarded by UniversityGrants Commission 'Best College Award' by University of Mumbai <u>Syllabus for Approval</u>

Sr. No.	Heading	Particulars
1	Title of Course	S. Y. B. Sc. Chemistry
2	Eligibility for Admission	F. Y. B. Sc. Passed from this autonomous college or university of Mumbai (or with ATKT in any three courses at the F. Y. B. Sc. Level) or equivalent qualification from other universities as may have been allowed by the relevant ordinances of this autonomous college or university of Mumbai
3	Passing marks	40%
4	No. of Semesters	Тwo
5	Level	U.G.
6	Pattern	Semester
7	Status	New as per NEP 2020
8	To be implemented from Academic year	2024-2025

Janardan Bhag at shik shan Prasarak Sanstha's

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

Re-accredited A+ Grade by NAAC 'College with Potential for Excellence 'Status Awarded by UniversityGrants Commission 'Best College Award' by University of Mumbai

Sr. No.	Heading	Particulars
1	Title of Course	S. Y. B. Sc. Chemistry
2	Eligibility for Admission	F. Y. B. Sc. Passed
4	Ordinances/Regulations (if any)	-
5	No. of Semesters	One year/Two semester
6	Level	U.G.
7	Pattern	Semester (60:40)
8	Status	New as per NEP-2020
9	To be implemented from Academic year	2024-2025

Preamble and objectives of the Course

In the first two semesters of the six-semester graduation program of B.Sc. (Chemistry) the learner was introduced to some basic aspects in the various core branches of chemistry like Physical Chemistry, Organic chemistry and Inorganic chemistry and Analytical chemistry Concepts about the structure of atom, distribution of electrons, Thermodynamics, Formation of organic compounds and basic ideas in reactivity of molecules in general and organic compounds in particular were introduced to the learner. He/she was made inquisitive about why and how should atoms combine to give molecules or ions. The non-orbital approach to appreciating the shapes of polyatomic species in general and molecules in particular.

The story of chemistry is taken further in the coming two semesters of the second year of the B. Sc. (Chemistry) Program. However, it is also realized that some students opting for the course on Chemistry may not continue with the subject subsequently as such the syllabus is designed to retain the interest of the serious learner of chemistry as well as be helpfulto non-chemistry learners. With such students who would want to pursue other branches of science but would want to acquire a basic appreciation and experience of chemistry a separate paper (Paper-III) is designed. This paper along with the laboratory session unit that goes with it deals with the basics of chemical analysis, separating components from a given sample, basic concepts like pH, experimental techniques like Titrimetry, Gravimetry, using instruments to carry out analysis, the various techniqueslike chromatography, electrophoresis, Instrumentation in general is felt to be of interest to learners of various branches like physics, botany, zoology, and microbiology.

Objectives of B.Sc. Chemistry course

- To infuse in the learner a spirit of inquiry into the fundamental aspects of the various core areas of Chemistry.
- To make the learner proficient in analyzing the various observations and chemical phenomena presented to him during the course.
- To make the learner capable of solving problems in the various units of this course.
- To give the learner an opportunity to get hands on experience of the various concepts and processes in the various branches of chemistry
- To impart various skills of handling chemicals, reagents, apparatus, instruments and the care and safety aspects involved in such handling
- To make the learner capable of analyzing and interpreting results of the experiments he conducts or performs
- To make the learner capable of acquiring or pursuing a source of livelihood like jobs in chemical industry
- To arouse the interest to pursue higher levels of learning in chemistry.

Janardan Bhagat Shikshan Prasarak Sanstha's

Changu Kana Thakur

Arts, Commerce and Science College, New Panvel (Autonomous)

Draft Syllabus

Syllabus for the S.Y.B.Sc. Semester III

Credit Based Semester and Grading System

To be implemented from the academic year 2024-25 SEMESTER III

Course Code	Unit	Topics	Credits	L/Week
USC3GCH3	Ι	Chemical Thermodynamics, Electrochemistry-I		1
Major-I	II	Chemical Bonding	03	1
	III	Chemistry of Alcohols, phenols and epoxides		1
USC3GCH4	Ι	Chemistry of Carbonyl Compounds, Stereochemistry		1
Major-II	II	Classical methods of Analysis	03	1
	III	Chemistry of Boron Compounds		1
USC3CHP	Ι	Physical Chemistry/ Inorganic Chemistry		
Practical	II	Organic Chemistry	02	04
	III	Analytical Chemistry		
UVSC3CSD Vocational Skill Course Practical	Ι	Soaps and detergents	02	04
LIOE3MOL	Ι	Chemistry of Water		
Open Elective- OE-I	II	Carbohydrates	02	02
USC3GCHM	Ι	Gaseous State, Liquid State, Thermodynamics, Periodic Table and Periodicity	02	02
Minor Chemistry	II	Nomenclature of Organic Compounds		
USC3CHPM Minor Chemistry Practical		Physical Chemistry/ Inorganic Chemistry Organic Chemistry/Analytical Chemistry	02	04

Janardan Bhagat Shikshan Prasarak Sanstha's

Changu Kana Thakur

Arts, Commerce and Science College, New Panvel (Autonomous)

Draft Syllabus

Syllabus for the S.Y.B.Sc. Semester IV

Credit Based Semester and Grading System

To be implemented from the academic year 2024-25 SEMESTER IV

Course Code	Unit	Topics	Credits	L/Week
	Ι	Electrochemistry -II, Phase Equilibria, Catalysis		1
Major-I	II	Chemistry of the transition metals, Coordination	03	1
		Chemistry	00	
	III	Carboxylic Acids and their Derivatives, An Introduction to Analytical Separations, Chromatography, Planar Chromatography		1
	Ι	Chemistry of nitrogen containing compounds,		1
Major-II		Heterocyclic Compounds	03	
	II	Basic concept of Analytical Instrument	05	1
	III	Uses and Environmental Chemistry of volatile		1
		Oxides and oxo-acids		
USC4CHP	Ι	Physical Chemistry/ Inorganic Chemistry		
Practical	Π	Organic Chemistry	02	04
	III	Analytical Chemistry		
USEC4FCP Skill Enhancement Course Practical	Ι	Chemistry of Food, Cosmetics and Perfumes	02	04
UOE4EC Open	Ι	Water pollution	02	02
Elective-OE-II	II	Air Pollution, Soil Pollution		

USC4BCHM Minor Chemistry -II	I	Solid State, Comparative chemistry of Main Group Elements, Comparative Chemistry of Compounds of Group I and Group II Elements Stereochemistry, Classical methods of Analysis	02	02
USC4CHPM Minor Chemistry -II Practical	I II	Physical Chemistry/ Inorganic Chemistry Organic Chemistry/Analytical Chemistry	02	04

Completion of S.Y.B.Sc. programme students will acquire

S. N.	After completion of S.Y.B.Sc. program students will acquire	Graduate Attribute
PO1	The knowledge of the disciplines and in-depth and extensive knowledge, understanding and skills in a specific field of interest.	Disciplinary knowledge
PO2	An ability to develop and conduct experiments, analyze, and interpret data and use scientific judgment to draw conclusions	Scientific reasoning
PO3	An ability to use current technology, and modern tools necessary for creation, analysis, dissemination of information.	Digital literacy
PO4	Innovative, professional, and entrepreneurial skills needed in various disciplines of science.	Life-long learning
PO5	An ability to achieve high order communication skills.	Communication skills
PO6	An ability to collect, analyze and evaluate information and ideas and apply them in problem solving using conventional as well as modern approaches	Problem solving
PO7	A sense of social responsibility; intellectual and practical skills and demonstration of ability to apply it in real-world settings.	Reflective thinking
PO8	An ability to engage in independent and life-long learning through openness, curiosity, and a desire to meet new challenges.	Life-long learning
PO9	A capacity to relate, collaborate, and lead others, and to exchange views and ideas to work in a team to achieve desired outcomes	Teamwork
PO10	An ability to function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Leadership
PO11	An ability to understanding values, ethics, and morality in a multidisciplinary context.	Moral and ethical awareness

SEMESTER-III

Course Description	Major -I
Semester	III
Course Name	General Chemistry-III
Course Code	USC3GCH3
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	3
Hours	45

Course Objectives

- 1. To develop laboratory competence in relating physical aspects in chemistry
- 2. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.
- 3. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes

After successful completion of this course students will be able to

Sr. No	Course Outcomes	Bloom Taxonom y Level (BLT)
CO1	Illustrate the equation of Gibbs free energy, Chemical potential, Transport number and degree of Ionization.	Understand
CO2	Construct the molecular orbital diagram of homonuclear diatomic molecules.	Apply
CO3	Compare the different properties, reactions and reactivity of alkyl/aryl/halides/organometallic compounds/alcohol, Phenol and epoxide.	Understand
CO4	Classify Analytical methods and Errors in analysis.	Understand

Unit	Course Description	Hrs
1	1.1 Chemical Thermodynamics (8 L)	15
	1.1.1 Free Energy Functions: Helmholtz Free Energy, Gibb's Free Energy	
	Variation of Gibb's free energy with Pressure and Temperature.	
	1.1.2 Gibbs-Helmholtz equation, van't Hoff reaction isotherm and van't Hoff	
	reaction isochore. (Numericals expected).	
	1.1.3 Thermodynamics of Open System: Partial Molal Properties, Chemical	
	Potential and its variation with Pressure and Temperature, Gibb's Duhem	
	equation.	
	1.1.4 Concept of Fugacity and Activity	
	1.2 Electrochemistry-I: (7 L)	
	1.2.1 Introduction of electrochemistry and its terminologies.	
	Conductivity, equivalent and molar conductivity and their variation with	
	dilution for weak and strong electrolytes.	
	1.2.2 Kohlrausch law of independent migration of ions.	
	1.2.3 Applications of conductance measurements: determination of degree of	
	ionization and ionization constant of weak electrolyte, solubility and	
	solubility product of sparingly soluble salts, ionic product of water.	
	(Numericals expected).	
	1.2.4 Transference number and its experimental determination using Moving boundary method. (Numericals expected). Factors affecting transference number.	
2	Chemical Bonding:	15
-	2.1 Non-Directional Bonding (4 L)	13
	2.1.1 Ionic Bond: Conditions for the Formation of Ionic Bond.	
	2.12 Types of Ionic Crystals	
	2.1.3 Radius Ratio Rules	
	2.1.4 Lattice Energy, Borne-Lande Equation	
	2.1.5 Kapustinski Equation	
	2.1.6 Born-Haber Cycle and its Application.	
	2.2 Directional Bonding: Orbital Approach. (6 L)	
	2.2.1 Interaction between two hydrogen atoms and the	
	tential energy diagram of the resultant system.	
	2.2.2 Homonuclear diatomic molecules from He ₂ to Ne ₂	

2.2.3 Resonance and the concept of Formal Charge; Rules for	
Resonance or Canonical structures.	
2.2.4 Bonding in Polyatomic Species: The role of Hybridization.	
And types of hybrid orbitals- <i>sp</i> , sp^2 , sp^3 , sp^3d , $sp^2d^2and sp^2d sp^3d^2$.	
2.2.5 Equivalent and Non-Equivalent hybrid orbitals	
2.2.6 Contribution of a given atomic orbital to the hybrid	
orbitals (with reference to sp^3 hybridisation as in CH ₄ , NH ₃ and	
H ₂ O and series like NH ₃ , PH ₃ , AsH ₃ , BiH ₃)	
2.3 Molecular Orbital Theory (5 L)	
2.3.1 Comparing Atomic Orbitals and Molecular Orbitals.	
2.3.2 Linear combination of atomic orbitals. To give molecular	
orbitals LCAO- MO approach for diatomic homonuclear	
nolecules.	
2.3.3 Molecular orbital Theory and Bond Order and magnetic	
property: with reference to O_2 , $O^{2+}O^{2-}$, O_2^{2-}	
(Problems and numerical problems expected wherever possible).	
3.1 Chemistry of Alcohols, phenols and epoxides: [8 L]	
3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes,	
3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of	
3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen	
3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties.	
3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols and methods of 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols and methods of preparation, 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols and methods of preparation, 3.1.3 Epoxides: Nomenclature, methods of preparation and reactions of 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols and methods of oreparation, 3.1.3 Epoxides: Nomenclature, methods of preparation and reactions of 	
 3.1.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Hydroboration of alkenes, hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols 3.1.2 Phenols: Nomenclature, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols and methods of preparation, 3.1.3 Epoxides: Nomenclature, methods of preparation and reactions of epoxides: reactivity, ring opening reactions by nucleophiles (a) In acidic conditions: hydrolysis, reaction with halogen halide, alcohol, hydrogen 	
3.2 Intro	duction to Analytical Chemistry [3 L]
------------	---
3.2.1 Ge	neral introduction of analytical chemistry
Chemica	l Analysis: Qualitative and Quantitative analysis. Common
Analytic	al Problems, Important terms associated with chemical analysis,
Steps in o	chemical analysis, Purpose of chemical analysis; Analysis Based
(i)	On the nature of information required: (Proximate, Partial, Trace
	Complete Analysis) and
(ii)	On the size of the sample used (Macro, semi-micro andmicro
	analysis)
3.2.2 Cla	ssification of analytical methods (Classical & instrumental
methods)	,
Importan	ce of analytical chemistry in various fields (Pharmaceutical,
Clinical,	agriculture, environmental studies and research).
3.3 Samj	pling (4 L)
Purpose,	significance and difficulties encountered in sampling
3.3.1 Sar	npling of solids: Sample size – bulk ratio, size to weight ratio,
multistag	e and sequential sampling, size reduction methods, sampling
of compa	ct solids, equipment and methods of sampling of compact
solids, sa	mpling of particulate solids, methods and equipment used for
sampling	of particulate solids.
3.3.2 Sar	npling of liquids: Homogeneous and heterogeneous, Static and
flowing l	iquids.
3.3.3 Sar	npling of gases: Ambient and stack sampling: Apparatus and
methods	for sampling of gases.
3.3.4 Co	ollection preservation and dissolution of the sample

Course Description (Theory)	Major-II
Semester	III
Course Name	General Chemistry – IV
Course Code	USC3GCH4
Eligibility for Course	F.Y.B.Sc.
Credit	03
Hours	45

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Construct the names and methods of preparation of carbonyl group compounds and role of active methylene compounds.	Apply
CO2	Classify analytical methods and describe chemical methods of analysis.	Understand
CO3	Summarize the chemistry of Boron and Silicon.	Understand
CO4	Explain complex chemical reactions, collision and activated complex theory, effect of temperature on Arrhenius equation.	Understand

Unit	Course Description	Hrs
1	1.1 Chemistry of Carbonyl Compounds: (11 L)	15
	1.1.1 Nomenclature of aliphatic, alicyclic and aromatic carbonyl compounds.	
	Structure, reactivity of aldehydes and ketones and methods of	
	preparation; Oxidation of primary and secondary alcohols using PCC,	
	hydration of alkynes, action of Grignard reagent on esters, Rosamund	
	reduction, Gattermann – Koch formylation and Friedel Craft acylation of	
	arenes	
	1.1.2 General mechanism of nucleophilic addition, and acid catalyzed	
	nucleophilic addition reactions.	

	-	
	1.1.3 Reactions of aldehydes and ketones with NaHSO ₃ , HCN, RMgX,	
	alcohol, amine, 2,4- Dinitrophenyl hydrazine, LiAlH ₄ and NaBH ₄ .	
	1.1.4 Mechanisms of reactions: Benzoin condensation, Knoevenagel	
	condensation and Cannizzaro reaction.	
	1.1.5 Keto-enol tautomerism: Mechanism of acid and base catalysed	
	enolization	
	1.1.6 Active methylene compounds: Acetylacetone, ethyl acetoacetate,	
	diethyl malonate, stabilized enols.	
	1.2 Stereochemistry: (4 L)	
	1.2.1 Stability of cycloalkanes: strains in cycloalkanes - angle, eclipsing,	
	transannular (3-6 member) Confirmation of cyclohexane, mono and di-alkyl cyclohexane and their	
	relative stability	
	1.2.2 Regioselective, chemo selective reaction	
2.	Classical methods of Analysis (15 L)	15
	2.1 Titrimetric Analysis (1L)	
	2.1.1 Terms involved in Titrimetric Analysis	
	2.1.2 Types of Titrations	
	2.2 Standardization: (4L)	
	2.2.1 Introduction, Concept of standard solution, primary standard, secondary	
	standard, requirements for primary and secondary standard	
	2.2.2 Preparation of standard solutions: (Molarity, Formality Normality W/W	
	W/V, ppm) dilution of solution. (Numerical Problems expected)	
	2.3 Neutralization Titrations (5L)	
	2.3.1 Concept of pH and its importance in Neutralization Titrations	
	2.3.2 End point and Equivalence point of Neutralization titrations	
	2.3.3 Construction of titration curve (on the basis of change in pH) and choice	
	of indicator of a titration of	
	i. Strong acid-strong base	
	ii. Strong acid-weak base	
	iii. Strong base-weak acid	
	2.3.4 Theory of Acid base indicators; Illustrate Acid base indicators with	

		examples	
	2.4	Gravimetric Analysis (5L)	
	2.4.1	Definition and Types of Gravimetric Analysis.	
	2.4.2	Precipitation Gravimetry with respect to theory and practice.	
	2.4.3	 (i) Solubility considerations: Common ion effect, diverse ion effect, pH and temperature. (ii) Controlling particle size with respect to nucleation and rate of crystal growth. 3 Treatment of precipitates in Gravimetry: Digestion, Filtration and 	
		Washing, Drying and Ignition.	
	2.4.4	Applications of Gravimetric analysis: Determination of Al (III) by 8- hydroxyquoline, Determination of calcium as oxalate; Determination of Ni by dimethyl glyoxime.	
3	3.1	Chemistry of Boron Compounds (4 L)	15
	3.1.1	Electron deficient compounds - BH3, BF3, BCl3 with respect to Lewis	
		acidity and applications.	
	3.1.2	Preparation of simple boranes like diborane and tetraborane.	
	3.1.3	Structure and bonding in diborane and tetraborane (2e-3c bonds)	
	3.1.4	Synthesis of Borax.	
	3.2	Chemistry of Silicon and Germanium (4L)	
	3.2.1	Silicon compounds: Occurrence, Structure and inertness of SiO ₂	
	3.2.2	Preparation and structure of SiCl ₄	
	3.2.3	Occurrence and extraction of Germanium	
	3.2.4	Preparation of extra pure Silicon and Germanium	
	3.3	Chemical Kinetics (7 L)	
	3.3.1	Integrated rate constant and half life of third-order reaction.	
	3.3.2	Types of Complex Chemical reactions:	
		Reversible or opposing, consecutive and parallel reactions (No	
		derivations, only examples expected).	
		Thermal chain reactions: H [•] and Br [•] reaction. (only steps involved, no	
		kinetic expression expected).	
	3.3.3	Effect of temperature on the rate of reaction, Arrhenius equation,	

Concept of energy of activation (Ea). (Numericals expected).	
3.3.4 Theories of reaction rates: Collision theory and activated complex	
theory of bimolecular reactions. Comparison between the two theories.	
(Qualitative treatment only)	

Chemistry Practical

Course Description	Practical
Semester	III
Course Name	Practicals in Chemistry
Course Code	USC3CHP
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	2
Hours	60

Course Outcomes:

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	To handle the conductometer and to study kinetics.	Understand
CO2	To identify the cations and anions in the given mixture.	Apply
CO3	Demonstrate the skills in organic preparations.	Apply
CO4	To learn gravimetric estimations and instruments like colorimeter and pH meter.	Understand

1.Physical Chemistry

1. Conductometry:

- i) To verify Ostwald's dilution law for weak acid conductometrically.
- ii) To determine solubility of sparingly soluble salts (any two) conductometrically.
- iii) To determine dissociation constant of weak acid conductometrically

2. Chemical kinetics

i) To investigate the reaction between $K_2S_2O_8$ and KI with equal initial concentrations of the reactants.

2.Inorganic Chemistry

1. Identification of two cations and two anions in a given mixture containing following (**any four mixtures**):

Cations
$$Pb^{2+}(II)$$
, $Ba^{2+}(II)$, $Ca^{2+}(II)$, $Sr^{2+}(II)$, $Cu^{2+}(II)$, $Cd^{2+}(II)$,
 $Mg^{2+}(II)$, $Zn^{2+}(II)$, $Fe^{2+}(II)$, $Fe^{3+}(III)$, $Ni^{2+}(II)$, $Co^{2+}(II)$ $Al^{3+}(III)$, $Cr^{3+}(III)$] and Anions: Cl^- , Br^- , I^- , NO_3^- , SO_4^{-2} , and CO_3^{-2}

3.Organic Chemistry

Short organic preparation and their purification: Use 0.5-1.0g of the organic compound.Purify the product by recrystallization. Report theoretical yield, percentage yield and melting point of the purified product.

Preparation of:

- 1. Cyclohexanone oxime from cyclohexanone.
- 2. Glucosazone from dextrose or fructose
- 3. Tribromoaniline from aniline.
- 4. β -Naphthylbenzoate from β -Naphthol
- 5. m-Dinitrobenzene from nitrobenzene
- 6. Phthalic anhydride from phthalic acid by sublimation
- 7. Acetanilide from aniline
- 8. p-Bromoacetanilide from acetanilide
- 9. Iodoform from acetone (Any six preparations).

4.Analytical Chemistry

1. Tools of analytical chemistry -I

2. Gravimetric Estimation:

- i) Gravimetric Estimation of Nickel (II) as Ni dmg.
- ii) Gravimetric Estimation of Barium as BaCrO_{4.}
- iii) Estimation of sulphate as BaSO_{4.}

3. *p*H metry:

i) Determination of buffer capacity of acid buffer and basic buffer.

4. Estimation of drugs:

i) Estimation of aspirin.

Course Description	Vocational Skill Course
Semester	III
Course Name	"Chemistry of Soap and Detergent"
Course Code	UVSC3CSD
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	02
Hours	60

Course Objectives:

- 1. To learn the scientific principle and production process of industrial soap and detergents
- 2. To enhance the skills in soap and detergent making and its quality control
- 3. To learn about the soap and detergent processing business, marketing strategies and cost

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Understand the chemistry of soaps and detergents	Understand
CO2	Select oils, active ingredients, surfactants and adjust their concentrations	Apply
CO3	Formulate own formulations of soap, hand wash, detergents and dish washing soap	Create
CO4	Calculate cost, control quality of final product and find business opportunities	Evaluate

Course Description

Theory

1. Soaps and detergents

- 1.1Chemistry of soap and detergents
- 1.2Raw material for soap and detergents industry and their selection,
- 1.3Chemical reactions of soaps and detergents,
- 1.4Washing action of soaps and detergents,
- 1.5Hard and Soft soaps and detergents, Liquid hand wash and liquid dish wash.

2. Production steps and Investment

2.1Packaging and Marketing

Practical

- 1. Determination of sap value of oil/fats
- 2. Determination of unsaponified matter in oils/fats
- 3. Preparation of soap from fat or oil with different actives and additives (Two)
- 4. Preparation of Liquid Hand Wash with different actives and additives (Two)
- 5. Synthesis of Detergent from Alcohols
- 6. Synthesis of green detergent using bio-waste
- 7. Testing of soap and detergent: pH, surface tension, wetting performance, emulsion stability, hard water test.
- 8. Comparative analysis of washing efficiency of soap and detergent
- 9. Estimation of total fatty matter in soap
- 10. Evaluation of foaming properties such as foam height, foam retention etc. of soap and liquid dish wash
- 11. Effect of temperature on detergent action
- 12. Analysis of soap and detergent formulations by Thin Layer Chromatography (TLC)
- 13. Determination of phosphate in detergents by UV-Visible spectrophtometer.
- 14. Analysis of detergents: Active detergent matter, Free alkali and oxygen releasing capacity

References

- Ajay Gupta, Handbook on soap, Detergent and Acid Slurry by NIIR Board, Asia Pacific Business Press Inc, 3rd Revised Edition 2013
- P. K. Chattopadhyay, Modern Technology of Soaps, Detergents & Toiletries (with Formulae & Project Profiles) 4th Revised Edition, NIIR Board publication
- 3. H. Panda, Herbal Soaps & Detergents Handbook, NIIR Board publication
- 4. The Science of Soaps and Detergents, David A. Kartz, 2000.

- 5. Bureau of Indian Standards: Specification for and Methods of Testing Soaps and Detergents
- ASTM-D820 Standard Test Methods for Chemical Analysis of Soaps Containing Synthetic Detergents ASTM-D820 - 1993 R23 EDITION

Course Description	Open Elective-OE-I
Semester	III
Course Name	Molecules of Life
Course Code	UOE3MOL
Eligibility for the Course	F.Y.B.Sc.
Credit	2
Hours	30

		Bloom
COs.	After completing course, Students will able to	Taxonomy
		Level (BTL)
CO1	Summarize various types of water depending on properties of	Understand
001	water molecule.	
	Explain biological importance, Properties, classification and role	Evaluate
CO2	of carbohydrates, lipids and hormones.	

Unit	Course Description	Hrs
1	Chemistry of Water The water molecule, type of water molecule, properties of pure water, fresh	15
	water and sea water. Composition of waters: surface water, ground water and	
	sea water. Dissolved gasses: Factors affecting natural waters. Acid, base, salts:	
	Hydrogen ions, modern concept of pH and buffer. Water analysis: collection	
	and preservation of water samples. Measurement of temperature, transparency,	
	turbidity, determination of pH, electrical conductivity, salinity, chlorinity, total	
	solids (TDS, TSS, TVS, TVDS), dissolved oxygen, free carbon dioxide, total	
	alkalinity, total hardness, Calcium, Magnesium, Inorganic Nitrogen	
	(Ammonium and Nitrate) and phosphorus.	
2	Carbohydrates [8 L]	15
	Definition, general formula, classification (monosaccharides,	
	disaccharides, oligosaccharide and polysaccharides), function, source and	
	examples of carbohydrates.	
	Carbohydrate food (Good carbohydrates and bad carbohydrates).	
	Lipids [4L]	
	Introduction, properties, classification, and types, role and examples of lipid.	
	Hormones [3 L]	
	Definition, function and role of hormones in living organism.	

REFERENCES:

1. Nelson, D. L, and Cox, M. M, (2008) Lehninger principles of Biochemistry 5th Edition, W. H. Freeman and Company, NY., USA.

- 2. Stryer, Lubert; Biochemistry; W. H. Freeman publishers.
- 3. Voet, D. and J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & sons, Inc. USA.
- 4. Zubay, Goffrey L; Biochemistry; Wm C. Brown publishers.

5. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J-M Basset, Chem. Rev. 2011, 111, 3036-3075;

- 6. R. B. Nasir Baig and R. S. Varma, Chem. Comm., 2013, 49, 752-770;
- 7. Water in water a book about a water cycle Miranda Paul 2015

Course Description	Minor
Semester	III
Course Name	General Chemistry
Course Code	USC3GCHM
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	02
Hours	30

Course Objectives

- To construct and apply knowledge of chemistry, and appreciate the relationship between Chemistry and other disciplines.
- > To promote understanding of basic facts and concepts in Chemistry while retaining the excitement of Chemistry.
- > To enable students to understand Chemistry and its Industrial and Social Context

COs.	After completing course, Students will able to	Bloom Taxonomy Lovel (BTL)
CO1	Define surface tension, viscosity of Liquid, Ideal gas and real gas.	Remember
CO2	Classify the elements according to electronic configuration and explain details of periodic trends and atomic structure.	Understand
CO3	Explain the name, bonding, structure and bond fission of organic compounds.	Evaluating
CO 4	Identify the shapes of molecules with and without lone pair of electrons and the oxidation number of elements to balance the redox equations	Apply

Unit	Course Description	Hrs
1.	1.1 Gaseous State: Ideal gas laws, kinetic theory of gases, ideal gases, real	15
	gases, compressibility factor, Van der Waals equation of state. [2L]	
	1.2 Liquid State: Surface tension: Introduction, methods of determination of	
	surface tension by drop number method, Viscosity: Introduction, coefficient	
	of viscosity, relative viscosity, specific viscosity, reduced viscosity,	
	determination of viscosity by Ostwald viscometer. [3 L]	
	1.3 Thermodynamics: Intensive and extensive variables; state and path	
	functions; isolated, closed and open systems; zeroth law of thermodynamics,	
	Concept of heat q, work w, internal energy U, statement of first law, second	
	law and third law of thermodynamics, Concept of entropy. [3 L]	

 Classification for elements as main group, transition and inner transition elements; Periodicity in the following properties: Atomic and ionic size; electron gain enthalpy; ionization enthalpy, effective nuclear charge (Slater's rule); electronegativity; Pauling, Mulliken and Alred Rochow electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, etters, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry. Chemical Analysis: Qualitative and Quantitative analysis, Steps in chemical analysis: Qualitative and Quantitative analysis based on (i) nature of information required (Proximat , Partial, Trace, Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical methods (Classical & instrumental methods) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		1.4 Periodic Table and Periodicity: Long form of Periodic Table:	
 classification for crements as many group, transition and inner size; electron gain enthalpy; ionization enthalpy, effective nuclear charge (Slater's rule); electronegativity; Pauling, Mulliken and Alred Rochow electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry. Chemical Analysis: Qualitative and Quantitative analysis. Common Analytical Problems, Important terms associated with chemical analysis, Steps in chemical analysis: Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) and (ii) on the size of samplu used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		Classification for elements as main group transition and inner transition	
 electrones, reinductry in the following properties. Atomic and following state, electron gain enthalpy; ionization enthalpy, effective nuclear charge (Slater's rule); electronegativity; Pauling, Mulliken and Alred Rochow electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Jnipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry. Chemical Analysis: Qualitative and Quantitative analysis, Steps in chemical analysis: Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		elements: Periodicity in the following properties: Atomic and ionic size:	
 clectrol gan enthalpy, ionization enthalpy, effective indicat charge (statet s rule); electronegativity; Pauling, Mulliken and Alred Rochow electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acid, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Common Analytical Problems, Important terms associated with chemical analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximat , Partial, Trace , Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		electron gain onthelaw ionization onthelaw offective aveloar charge (Sloter's	
 rule); electronegativity; Pauling, Multiken and Aired Kocnow electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis, Steps in chemical analysis. Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		electron gain entilapy, ionization entilapy, effective nuclear charge (Statel's	
 electronegativities (Numerical problems expected, wherever applicable.) [4 L] 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethyne, Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		rule); electronegativity; Pauling, Mulliken and Alred Rochow	
 1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate, Partial, Trace, Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical methods (Classical & instrumental methods) Importance of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		electronegativities (Numerical problems expected, wherever applicable.) [4 L]	
 between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate, Partial, Trace, Complete analysis) Classification of analytical methods (Classical & instrumental methods) Importance of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		1.5 Chemical Bond and Reactivity: Types of chemical bond, comparison	
 structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) Classification of analytical methods (Classical & instrumental methods) Importance of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		between ionic and covalent bonds, polarizability (Fajan's Rule), Lewis's dot	
 molecules with and without lone pair of electrons, applications and limitations of VSEPR theory. [3 L] 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		structure, Sidgwick Powell Theory, basic VSEPR theory for ABn type	
 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Common Analytical Problems, Important terms associated with chemical analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical methods (Classical & instrumental methods) Importance of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 		molecules with and without lone pair of electrons, applications and limitations	
 2. 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Common Analytical Problems, Important terms associated with chemical analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate, Partial, Trace, Complete analysis) and (ii) on the size of sample used (Macro, semi micro and micro analysis) Classification of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) 	2	of VSEPR theory. [3 L]	1.
[3 L] 2.4 Standardization: Introduction, Concept of standard solution, primary standard, secondary standard and their requirements. Preparation of standard solutions: (Molarity, Formality Normality W/W W/V, ppm) dilution of solution. (Numerical Problems expected) [4 L]	2.	 2.1 Nomenclature of Organic Compounds: Classification and Nomenclature of organic compounds: Review of basic rules of IUPAC nomenclature. Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues [4 L] 2.2 Bonding and Structure of Organic compounds: Hybridization: sp3, sp2, sp hybridization of carbon and nitrogen; Shapes of molecules; ethane, ethane, ethyne, Influence of hybridization on bond properties (as applicable to ethane, ethene, ethyne), Dipole moment. [4 L] 2.3 Introduction to Analytical Chemistry : General introduction of analytical chemistry, Chemical Analysis: Qualitative and Quantitative analysis. Common Analytical Problems, Important terms associated with chemical analysis, Steps in chemical analysis-Purpose of chemical analysis; Analysis based on (i) nature of information required (Proximate , Partial, Trace , Complete analysis) Classification of analytical methods (Classical & instrumental methods) Importance of analytical chemistry in various fields (Pharmaceutical, Clinical, agriculture, environmental studies and research) [3 L] 2.4 Standardization: Introduction, Concept of standard solution, primary standard, secondary standard and their requirements. Preparation of standard solutions: (Molarity, Formality Normality W/W W/V, ppm) dilution of solution. (Numerical Problems expected) [4 L] 	15

Course Description	Minor
Semester	III
Course Name	General Chemistry Practical
Course Code	USC3CHPM
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	02
Hours	60

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Apply chemical kinetics law to calculate the rate constant of the reactions.	Apply
CO2	Make use of conductomer, pH meter, potentiometer for the determination of various ions in the given solution.	Apply
CO3	Show the preparation, estimation of organic compounds.	understand
CO 4	Identify organic compound containing C,H (O) N, S, X elements.	Apply

	Course Description	30 Hrs
1.	To determine the rate constant for the saponification reaction between ethyl acetate and NaOH .	
2.	To standardize the commercial sample of NaOH using KHP and to write the material safety Data of the chemicals involved.	
3.	To determine the solubility of sparingly soluble salts (BaSO4 & PbSO4) Conductometrically.	
4.	To determine the standard emf and standard free energy change of Daniel cell potentiometrically.	
5.	To determine the amount of strong acid in a given solution by titration with strong base using conductometer.	
6.	Preparations of copper sulphate from copper (II) oxide.	
7.	Preparation of Tris (ethylene diamine) Nickel (II) thiosulphate	
8.	Investigation of the reaction between copper sulphate and sodium hydroxide.	
9.	Gravimetric estimation of Nickel (II) as Ni-(DMG) _{2.}	
10.	Gravimetric estimation of sulphate ion as BaSO ₄	
11.	Determination of strength of Na ₂ CO ₃ & NaHCO ₃ in a solution of the two by titration with standard acid using phenolphthalein and methyl orange	

	indicators.	
12.	To prepare m-dinitrobenzene from nitrobenzene.	
13.	To prepare phthalic anhydride from phthalic acid by sublimation.	
14.	To prepare glucosazone from fructose or dextrose.	
15.	To prepare acetanilide from aniline.	
16.	Characterization of bifunctional Organic compounds (any three)	
17.	To determine the amount of potassium oxalate and oxalic acid in the given solution titrimetrically.	
18.	Determination of copper ions in the given solution by using calibration curve method.	
19.	To estimate the amount of aspirin from the given sample.	
20.	To determine the amount of a given strong acid (HCl) by potentiometric titration using Quinhydrone electrode.	

SEMESTER-IV

Course Description (Theory)	Major -I
Semester	IV
Course Name	General Chemistry-III
Course Code	USC4GCH3
Eligibility for Course	F.Y.B.Sc.(Chemistry)
Credit	03
Hours	45

COs.	After completing course, Students will able to	Bloom
		Taxonomy
		Level (BTL)
CO1	Explain thermodynamics properties, equilibrium constant and different types of electrodes mechanisms and kinetics of establists	Understand
	different types of electrodes, mechanisms and kinetics of catalysis.	
CO2	List the properties of transition metal compounds and different types of isomers in coordination compounds.	Remember
CO3	Compare properties, acidity, preparations, reactions, nucleophilicity	Analyze
	of acyl substituents of carboxylic acid and stereochemistry.	
CO4	Classify various separation methods based on their principles.	Understand

Unit	Course Description H		
1	1.1 Electrochemistry -II (7 L)	15	
	1.1.1 Electrochemical conventions, Reversible and irreversible cells.		
	1.1.2 Nernst equation and its importance, Types of electrodes, Standard electrode		
	potential, Electrochemical series (Numericals expected).		
	1.1.3 Thermodynamics of a reversible cell, calculation of thermodynamic properties:		
	ΔG , ΔH and ΔS from EMF data. (Numericals expected)		
	1.1.4 Calculation of equilibrium constant from EMF data. (Numericals expected)		
	1.1.5 Concentration cells with transference and without transference. Liquid junction		
	potential and salt bridge.		
	1.1.6 pH determination using hydrogen electrode and quinhydrone electrode.		
	(Numericals expected)		
	1.2 Phase Equilibria: (5 L)		
	1.2.1 Phases, components and degrees of freedom of a system, criteria of phase		

	equilibrium. Gibbs Phase Rule and its thermodynamic derivation.	
	1.2.2 Derivation of Clausius – Clapevron equation and its importance in phase	
	equilibria. (numericals expected)	
	1.2.3 Phase diagrams of one-component systems (water and sulphur).	
	1.2.4 Two component systems involving eutectics, congruent and incongruent melting	
	points (lead-silver system).	
	1.2.5 Three component systems (Propanol-hexane-water system)	
	1.3 Catalysis: (3 L)	
	1.3.1 Types of catalysis, catalytic activity, specificity and selectivity, inhibitors.	
	catalyst poisoning and deactivation	
	1.3.2 Mechanisms and kinetics of acid-base catalyzed reactions. effect of pH.	
	1.3.3 Mechanisms and kinetics of enzyme catalyzed reactions (Michaelis-Menten equation)	
2.	2.1 Chemistry of the transition metals (9 L)	15
	2.1.1 Position in the periodic table; Natural occurrence principal ores and minerals;	
	2.1.2 Significance of special stability of d^0 , d^5 and d^{10} leading to variable oxidation	
	states; Unusual oxidation states and their stabilities in aqueous solutions (with special	
	reference to vanadium, and chromium.)	
	2.1.3 Origin of colour for transition metals and their compounds: such as reflectivity,	
	surface coatings, particle size, packing density for metals and nature of d-orbitals,	
	number of electrons in the d-orbitals, geometry, and ability for charge transfer).	
	2.1.4 Magnetic properties of transition metal compounds: Origin of magnetism-spin	
	and orbital motion of electrons; equation for spin only and spin-orbital magnetism in	
	terms of Bohr magnetons (No derivation of relevant equations expected); Reasons for	
	quenching of orbital moments.	
	2.1.5 Chemistry of Titanium: properties of oxides and chlorides; use in titrimetric	
	analysis	
	2.1.6 Qualitative tests for transition metal ions: General considerations in devising	
	tests (with reference to Chromium, Manganese, iron, Cobalt Nickel and Copper)	
	2.2 Coordination Chemistry : (6 L)	
	2.2.1 Chemistry of Coordination Compounds	
	i) Isomerism : General Types with special reference to stereoisomerism of	
	coordination compounds (C.N. $=$ 6),	
	ii) Evidence for the formation of coordination compounds.	
	2.2.2 Effective atomic number rule and Eighteen electron Rule	

		-
	2.2.3 Nature of the Metal-Ligand Bond:	
	i) Valence Bond Theory; Hybridisation of the central metal ion - sp^3 , sd^3/d^3s	
	sp^3d^2/d^2sp^3 , sp^2d .	
	ii) Inner and outer orbital complexes of Mn(II) ,Fe(II), ,Fe(III),Co(II)/Co(III),Ni(II),	
	Cu(II), Zn(II) with ligands like aqua, ammonia CN- and halides may be used)	
	iii) Limitations of V.B.T	
	2.2.4 Application of coordination compounds.	
3.	3.1 Carboxylic Acids and their Derivatives : (8 L)	15
	3.1.1 Nomenclature, structure and physical properties, acidity of carboxylic acids,	
	effects of substituents on acid strength of aliphatic and aromatic carboxylic acids.	
	3.1.2 Preparation of carboxylic acids: oxidation of alcohols and alkyl benzene,	
	carbonation of Grignard and hydrolysis of nitriles.	
	3.1.3 Reactions: Acidity, salt formation, decarboxylation, Reduction of carboxylic	
	acids with LiAlH4, diborane, Hell-Volhard-Zelinsky reaction, Conversion of	
	carboxylic acid to acid chlorides, esters, amides and acid anhydrides and their relative	
	reactivity.	
	3.1.4 Mechanism of nucleophilic acyl substitution and acid-catalysed nucleophilic acyl	
	substitution. Interconversion of acid derivatives by nucleophilic acyl substitution.	
	3.2 An Introduction to Analytical Separations: (7 L)	
	3.2.1 Types of separation methods	
	Based on Solubilities (Precipitation, Filtration Crystallisation)	
	Based on Gravity- Centrifugation	
	Based on volatility-Distillation ;	
	Based on Electrical effects-Electrophoresis	
	Based on retention capacity of a Stationary Phase -Chromatography;	
	Based on distribution in two immiscible phases-Solvent Extraction;	
	Based on capacity to exchange with a resin-Ion Exchange;	
	3.2.2 Chromatography	
	Introduction to Chromatography	
	Classification of chromatographic methods	
	i) based on stationary and mobile phase	
	ii) based on mode of separation	
	iii) based on interface	

3.2.3 Planar Chromatography	
Principle, techniques and applications of	
Paper chromatography	
Thin layer chromatography	

Semester- IV

Course Description (Theory)	Major -II
Semester	IV
Course Name	General Chemistry-IV
Course Code	USC4GCH4
Eligibility for Course	F.Y.B.Sc.
Credit	03
Hours	45

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Outline the synthesis, reaction of amines and heterocyclic compounds like Furan, Pyrrole, Thiophene.	Understand
CO2	Apply statistical methods to treat the analytical data.	Apply
CO3	Identify the hazardous effect of air pollutant like sulphuric acid, nitric acid and phosphoric acid.	Apply
CO4	Explain law of crystallography, types of crystal, Interplanar distance in lattice.	Understand

Unit	Cour	rse Description	Hrs
1	1.1 Cł	nemistry of nitrogen containing compounds.	15
	1.1.1	Amines: (4 L)	
		Nomenclature, effect of substituent on basicity of aliphatic and	
		aromatic amines;	
		Preparation: Reduction of aromatic nitro compounds using catalytic	
		hydrogenation chemical reduction using Fe-HCI, Sn-HCl, Zn-acetic	
		acid, reduction of nitriles, ammonolysis of halides, reductive	
		amination, Hofmann bromamide reaction.	
		Reactions- Salt Formation, N-acylation, N-alkylation, Hofmann's	
		exhaustive methylation (HEM), Hofmann-elimination reaction,	
		reaction with nitrous acid, carbylamine reaction, Electrophilic	
		substitution in aromatic amines: bromination, nitration and	
		sulphonation.	
	1.1.2	Diazonium Salts: (3 L)	
		Preparation and their reactions/synthetic application - Sandmeyer	
		reaction, Gattermann reaction, Gomberg reaction, Replacement of	
		diazo group by -H,-OH. Azo coupling with phenols, naphthols and	
		aromatic amines, reduction of diazonium salt to aryl hydrazine	
	1.2	Heterocyclic Compounds: (8 L)	
	1.2.1	Classification, nomenclature, electronic structure, aromaticity in 5-	
		numbered and 6-membered rings containing one heteroatom;	
	1.2.2	Synthesis of Furan, Pyrrole, Thiophene (Paal-Knorr synthesis),	
		Pyridine (Hantzsch synthesis)	
	1.2.3	Reactivity of furan, pyrrole and thiophene towards electrophilic	
		substitution reactions on the basis of stability of intermediate and of	
		pyridine on the basis of electron distribution. Reactivity of pyridine	
		towards nucleophilic substitution on the basis of electron distribution.	
	1.2.4	Reactions of furan, pyrrole and thiophene: halogenation, nitration,	
		sulphonation, Vilsmeier-Haack reaction, Friedel-Crafts reaction. Furan:	
		Diels-Alder reaction, Pyrrole: Acidity and basicity of pyrrole.	
		Comparison of basicity of pyrrole and pyrrolidine.	
	1.2.5	Pyridine: Basicity. Comparison of basicity of pyridine, pyrrole and	

		piperidine. Sulphonation of pyridine (with and without catalyst), reduction and action of sodamide (Chichibabin reaction)		
2			15	
2.	Ba	asic concept of Analytical Instrument. (15 L)	15	
	2.1	Relation between the Analyte, Stimulus and measurement of change in the observable property.(1L)		
	2.2	Types of Analytical Instrumental methods based on		
		i. Optical interactions (eg. Spectrometry: uv-visible, Polarimetry)		
		ii. Electrochemical interactions (eg. Potentiometry, Conductometry,)		
		iii. Thermal interactions (eg. Thermogravimetry) (2L)		
	2.3	Visible Spectroscopy (12 L)		
	2.3.1	Interaction of electromagnetic radiation with matter: Absorption and		
		Emission spectroscopy		
	2.3.2	Basic Terms: Radiant Power, Absorbance, Transmittance,		
		Monochromatic light, Polychromatic light, Wavelength of		
		maximum absorbance, Absorptivity and Molar Absorbtivity		
	2.3.3	Statement of Beer's Law and Lambert's Law, Combined		
		Mathematical Expression of Beer - Lambert's Law, Validity of Beer-		
		Lambert's Law, Deviations from Beer-Lambert's Law ((Real		
	deviations, Instrumental deviations and Chemical deviations)			
		(Numerical problems based on Beer-Lambert's Law)		
	2.3.4	Instrumentation of Colorimeters.		
	2.3.5	Block Diagrams for Single beam and double beam Colorimeter		
	2.3.6	quantitative applications of colorimetry: Calibration curve method		
3	3.1U	ses and Environmental Chemistry of volatile Oxides and oxo-acids	15	
	(8 L)			
	3.1.1	Physical properties of concentrated oxo-acids like sulfuric, Nitric and		
		Phosphoric acid		
	3.1.2	Uses and environments aspects of these acids		
	5.1.3	Greenhouse gases, greenhouse effect: Causes, Consequences and		
	314	Ozone depletion: Causes Machanism consequences and abatement		
	J.1.4	31		

(CFCs to be included)

3.2 Solid State Chemistry: (7 L)

- **3.2.1** Recapitulation of laws of crystallography and types of crystals.
- **3.2.2** Characteristics of simple cubic, face centered cubic and body centered cubic systems, interplanar distance in cubic lattice (only expression for ratio of interplanar distances are expected)
- **3.2.3** Use of X-rays in the study of crystal structure, Bragg's equation (derivation expected), X-rays diffraction method of studying crystal lattice structure, structure of NaCl and KCl. Determination of Avogadro's number (Numericals expected)

Semester IV

Chemistry Practical's

Course Description	Practical
Semester	IV
Course Name	Practicals in Chemistry
Course Code	USC4CHP
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	2
Hours	60

Course Outcomes:

		Bloom Taxonomy
COs.	After completing course, Students will able to	Level (BTL)
CO1	Learn to handle the instrument potentiometer and kinetics of two acids.	Understand
CO2	Demonstrate the skills in inorganic preparations.	Apply
CO3	To identify the functional group present in organic compound and determine its mpt/bpt.	Apply
CO4	To understand the working of conductometer and potentiometer.	Apply

1.Physical Chemistry

Potentiometry :

- 1. To determine standard EMF and the standard free energy change of Daniel cellpotentiometrically.
- 2. To determine the amount of HCl in the given sample potentiometrically.

Chemical kinetics:

1. Compare the strengths of HCl and H₂SO₄ by studying kinetics of acid hydrolysis of methyl acetate.

2.Inorganic Chemistry

Inorganic preparations

- i) Nickel dimethyl glyoxime using microscale method.
- ii) Tris (ethylene diamine) nickel (II) thiosulphate.
- iii) Calcium or magnesium oxalate using PFHS technique.
- 2. Estimation of total hardness.
- 3. Investigation of the reaction between Copper sulphate and Sodium Hydroxide(Standard EDTA solution

to be provided to the learner).

3.Organic Chemistry

Qualitative Analysis of bi-functional organic compounds on the basis of

Preliminary examination

Solubility profile

Detection of elements C, H, (O), N, S, X.

Detection of functional groups

Determination of physical constants (M.P/B.P)

Solid or liquid Compounds containing not more than two functional groups from among the following classes may be given for analysis to be given: Carboxylic acids, phenol, carbohydrates, aldehydes, ketones, ester, amides, nitro, anilides, amines, alkyl and aryl halides.

Students are expected to write balanced chemical reactions wherever necessary. (Minimum **6 compounds** to be analyzed)

4. Analytical chemistry

- 1. Tools of analytical chemistry-II
- 2. Paper chromatography

i) Separation of cations like Fe(III), Ni(II) & Cu(II) in a sample.

3. Conductometry:

i) Estimation of given acid by conductometric titration with strong base.

4. Potentiometry:

i) Estimation of Fe(II) in the given solution by titrating against $K_2Cr_2O_7$ Potentiometrically.

5. Colorimetry:

i) Determination of copper ions in the given solution by using calibration curve.

Reference Books for Practicals:

- Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R.Chand and Co., New Delhi (2011).
- Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8th Ed., McGraw-Hill, New York (2003).
- 3. Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rd Ed., W.H. Freeman and Co., New York (2003).
- Athawale V.D. and Mathur P., Experimental Physical Chemistry, New AgeInternational, New Delhi (2001).

- 5. *Practical Inorganic Chemistry* by G. Marr and B. W. Rockett van Nostrand Reinhold Company (1972).
- 6. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 8. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic th Chemistry,5 Ed., Pearson (2012).
- 9. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.

Course Description	Skill Enhancement Course
Semester	IV
Course Name	Chemistry of Food, Cosmetics and Perfumes
Course Code	USEC4FCP
Eligibility for Course	F.Y.B.Sc. (Chemistry)
Credit	02
Hours	60

		Bloom Taxonomy
COs.	After completing course, Students will able to	Level (BTL)
CO1	Apply the skills to identify the adulterants in foods.	Apply
CO2	Estimate the quality and quantity of food, cosmetics and perfumes.	Apply

Course Description :

Sr.	Title of Practical	Hrs
No.		
1	Determination of saponification value of the given fat/oil.	60
2	Determination of acid values of the given fat/oil.	
3	Determination of iodine value of the given fat/oil.	
4	Qualitative estimation of carbohydrates.	
5	Determination of rancidity of edible oils by Kriess Test.	
6	Estimation of carotenoids in sample by colorimetric method.	
7	Extraction and separation of pigments present in vegetables by Thin	
	Layer Chromatography (TLC).	
8	Identification of adulterants in some common food items (like coffee	
	powder, asafoetida, chili powder, turmeric powder, coriander powder	
	and pulses, etc.)	
9	Determination of moisture content in food, ash content and	
	determination of calcium, iron, vitamin C.	
10	Determination of moisture in food products by hot air oven-drying	
	method.	
11	Colorimetric determination of iron in vitamin/dietary tablets.	
12	Determination of constituents of talcum powder: Magnesium oxide,	
	Calcium oxide, Zinc oxide and Calcium carbonate by complexometric	
	titration.	

References:

1. Skoog D.A., West D.M., Holler, F.J., Crouch S.R., Fundamentals of Analytical Chemistry, 9th Edition, Cengage learning.

2. Quality control chemist participant manual prepared by LSSSDC in collaboration with NSDC India. 3. <u>https://www.iso.org/home.html</u>

3. Ranganna, S. (2017). Handbook of analysis and quality control for fruits and vegetable products, 2nd Edn., McGraw Hill Education

4. Sawhney, S.K., Singh, R. (2001), Introductory Practical Biochemistry, Narosa Publishing House

5. J. Stephan Jellinick, "Formulation and Functions of Cosmetics", Wiley Interscience, a Division of John Wiley & Sons., Inc.

6. M.S. Balsem, S.D. Genshon, M.M. Rieger, E. Sagarin, S.J. Strianase, "Cosmetics, Science and Technology, Vol. I, II and II, Wiley-Interscience, A Division of John Wiley and Sons., Inc., New York, London, Sydney, Toronto, 1972, Ed. By M.S. Balsam and M.S. Sagarin

 Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M.; Sivasankar, B., Vogel's Textbook of Quantitative Chemical Analysis, 6th Ed., Pearson Education, New Delhi (2009).
 Raj, G., Advanced Practical Inorganic Chemistry, Krishna Prakashan, Meerut, Meerut (2013).

Course Description	Open Elective-OE-II
Semester	IV
Course Name	Environmental Chemistry
Course Code	UOE4EC
Eligibility for the Course	F.Y.B.Sc.
Credit	2
Hours	30

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Summarize various types of water pollution.	Understand
CO2	Explain various types of Air, Water and Soil Pollution	Evaluate

Unit	Course Description	Hrs
1	Water pollution:	15
	Introduction, Source of water pollution: Domestic, Industrial and Agricultural.	
	Types of water pollution: Fresh water pollution (River, ponds and lakes), Marine	
	water pollution,	
	Analysis of water: Physical parameter: Color, Taste, Odour, Total solids,	
	Suspended solids, Dissolved solids and Turbidity. Chemical Parameter: pH	
	Hardness, Biological Oxygen Demand (BOD), Chemical Oxygen Demand	
	(BOD)	
	Quality of water: Meaning of pure water, Standards of portable water	
2	Air Pollution (8L)	15
	Air Pollution – Introduction, Definition, Causes of air pollution – Manmade:	
	Domestic, Industrial, Automobile, Agriculture, Mining	
	Effects of Air pollutants: Human health, Greenhouse effect, Global warming,	
	ozone depletion, Acid rain, Photochemical smog.	
	Prevention and Control of Air Pollution.	
	Soil Pollution (7L)	

Soil Pollution – Introduction, Definition, Soil (origin, formation, composition and soil profile), Types of soil pollution. Causes and Effects of Soil Pollution:
a. Causes of soil pollution (Natural, Man-made).
b. Effects of soil pollution (Soil salinity, soil acidification, soil fertility, soil texture, plant growth, human health). Control Measures of Soil Pollution.

REFERENCES:

- 1. Ladbetter J.O., Air Pollution, Marcel Dekker.
- 2. Liptak, B.G. Environmental Engineers Handbook, Vol. I, Air Pollution, Chilton Book Company, U.S.A.
- 3. Liptak, B.G. Environmental Engineers Handbook, Vol. II, Water Pollution, Chilton Book Company, U.S.A.
- 4. Mason, F.C. Biological Effects of Water Pollution.
- 5. Nemerow, N.L. Theories and Practice of Industrial Waste Treatment, Addision- Wesley, Reading, U.K.

Minor Chemistry -II
IV
Basics in Chemistry
USC4BCHM
F.Y.B.Sc.
02
30
_

Course Objectives

- > To construct and apply knowledge of chemistry, and appreciate the relationship between Chemistry and other disciplines.
- > To promote understanding of basic facts and concepts in Chemistry while retaining the excitement of Chemistry.
- > To enable students to understand Chemistry and its Industrial and Social Context.

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Explain the law of crystallography, types of crystal, interplanar distance in lattice.	Remember
CO2	Outline the metallic and non-metallic nature, oxidation states,	Understand

	electronegativity, Anomalous behaviour and allotropy of main group elements.	
CO3	Explain enantiomer, optical activity, diastereomers, projection formulas, isomerism.	Apply
CO 4	Outline the principles and preparations of titrimetric analysis	Understand

Unit	Course Description	Hrs
1.	1.1 Solid State : Recapitulation of laws of crystallography and types of crystals. Characteristics of simple cubic, face centered cubic and body	15
	centered cubic systems, interplanar distance in cubic lattice (only	
	expression for ratio of interplanar distances are expected).	
	Use of X-rays in the study of crystal structure, Bragg's equation	
	(derivation expected), X-rays diffraction method of studying crystal lattice	
	structure, structure of NaCl and KCl. Determination of Avogadro's	
	number (Numericals expected). [7 L]	
	1.2 Comparative chemistry of Main Group Elements: Metallic and non-metallic nature, oxidation states, electronegativity, anomalous	
	behaviour of second period elements, allotropy, catenation, diagonal relationship. [3 L]	
	1.3 Comparative Chemistry of Compounds of Group I and Group II Elements: Comparative chemistry of carbides, nitrides, oxides and hydroxides of group I and group II elements. Some important compounds-	
	NaHCO ₃ , Na ₂ CO ₃ , NaCl, NaOH, CaO, CaCO ₃ [5 L]	
2.	 2.1 Stereochemistry: Classification of isomer, IUPAC nomenclature of stereoisomers. Fischer Projection, Newman and Sawhorse Projection formulae (of erythro, threo isomers of tartaric acid and 2,3 dichlorobutane) and their interconversions; Geometrical isomerism in alkene and cycloalkanes: cis–trans and syn-anti isomerism E/Z notations with C.I.P. rules. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two similar and dissimilar chiral centres, Distereoisomers, meso structures, racemic mixture and resolution (methods of resolution not expected). Relative and absolute configuration: D/L and R/S designations. [8 L] 2.2 Classical methods of Analysis Titrimetric Analysis, Terms involved in Titrimetric Analysis and Types of 	15
	 Titrations. [1 L] Tools of titrimetry: Graduated glassware and their Calibration i) Volumetric Flask ii) Burette iii) Pipette [3L] Neutralization Titrations. Concept of pH and its importance in Neutralisation Titrations. End point and Equivalence point of Neutralisation titrations. Construction of titration curve (on the basis of change in pH) and choice of indicator of a titration of i) Strong acid-strong base ii) Strong acid-weak base iii) Strong base-weak acid. [3 L] 	

Course Description (Theory)	Minor Chemistry -II
Semester	IV
Course Name	Practicals in Minor chemistry-II
Course Code	USC4CHPM
Eligibility for Course	F.Y.B.Sc.
Credit	02
Hours	30

COs.	After completing course, Students will able to	Bloom Taxonomy Level (BTL)
CO1	Show the amount of ions present in the given solutions	understand
CO2	Make use of potentiometer, pH meter, conductometry for the chemical reactions.	Apply
CO3	explain the estimation, preparation, of organic compounds.	understand
CO 4	determine the rate constant of the chemical reaction	evaluate

	Course Description	30
		Hrs
1.	To investigate the reaction between $K_2S_2O_8$ and KI with equal	
	concentrations of the reactants.	
2.	To determine the strengths of HCl and H ₂ SO ₄ by studying kinetics	
	of acid hydrolysis of methyl acetate.	
3.	To determine the enthalpy of dissolution of salt (KNO ₃).	
4.	To standardize the commercial sample of HCl using borax and write	
	Material Safety Data of the chemicals involved.	
5.	To determine the viscosity of a given liquid by using Ostwald's	
	viscometer.	
6.	To estimate the hardness of given water sample.	
7.	To prepare barium chromate from barium chloride.	
8.	Determine the percentage composition of BaSO4 and NH4Cl in the	
	given mixture gravimetrically.	
9.	To determine the percentage purity of given sample of ascorbic acid.	
10.	To determine the amount of copper (II) present in the given sample	
	by titration against a standard aqueous solution of sodium	
	thiosulfate odometrically.	

11.	To prepare cyclohexanone oxime form cyclohexanone.	
12.	To prepare p-bromoacetanilide form acetanilide.	
13.	To prepare iodoform from acetone.	
14.	Determination of copper ions in the given solutions by using calibration curve method.	
15.	Determination of acetic acid in vinegar by titrimetric method.	
16.	To estimate Fe(II) in the given solution by titrating $K_2Cr_2O_7$ potentiometrically.	
17.	Separation of cations like Fe(II), Ni(II) and Cu(II) in a sample by using paper chromatography.	
18.	To determine the amount of Magnesium present in the given solution complexometrically.	
19.	To verify the Beer-Lamberts law using KMnO4 solution by Colorimetric method.	
20.	To determine the buffer capacity of acid buffer.	

II विद्या विनयेन शोभते II

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE AND SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A⁺' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: Bachelor's in Science (B. Sc.)

SYLLABUS

(Approved in the Academic council meeting held on 27th June 2023)

T.Y.B.Sc. Chemistry

Revised as per Choice Based Credit System (60:40) w. e. f. Academic Year 2023-24

BACHELOR'S IN SCIENCE (B.Sc.)

Programme Outcomes

S. N.	After completion of B.Sc. program students will acquire	Graduate Attribute
PO1	The knowledge of the disciplines and in-depth and	Disciplinary
	extensive knowledge, understanding and skills in a	knowledge
	specific field of interest.	
PO2	An ability to develop and conduct experiments,	Scientific reasoning
	analyze, and interpret data and use scientific	
	judgment to draw conclusions	
PO3	An ability to use current technology, and modern	Digital literacy
	tools necessary for creation, analysis, dissemination	
	of information.	
PO4	Innovative, professional, and entrepreneurial skills	Life-long learning
	needed in various disciplines of science.	
PO5	An ability to achieve high order communication	Communication
	skills.	skills
PO6	An ability to collect, analyze and evaluate	Problem solving
	information and ideas and apply them in problem	
	solving using conventional as well as modern	
	approaches	
PO7	A sense of social responsibility; intellectual and	Reflective thinking
	practical skills and demonstration of ability to apply	
	it in real-world settings.	
PO8	An ability to engage in independent and life-long	Life-long learning
	learning through openness, curiosity, and a desire to	
	meet new challenges.	
PO9	A capacity to relate, collaborate, and lead others, and	Teamwork
	to exchange views and ideas to work in a team to	
	achieve desired outcomes	
PO10	An ability to function effectively as an individual,	Leadership
	and as a member or leader in diverse teams, and in	
	multidisciplinary settings.	

PO11An ability to understanding values, ethics, and
morality in a multidisciplinary context.Moral and ethical
awareness

Preamble:

Bachelor of Science (B.Sc.) in Chemistry is an undergraduate course of Department of Chemistry, Changu Kana Thakur Arts, Commerce & Science College, New Panvel (Autonomous). The Choice Based Credit System to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities. This syllabus is prepared to give the sound knowledge and understanding of chemistry to undergraduate students at third year of the B.Sc. degree course. The goal of the syllabus is to make the study of Chemistry as stimulating, interesting and relevant as possible. The syllabus is prepared by keeping in mind the aim to make students capable of studying Chemistry in academic and industrial courses. Also to expose the students and to develop interest in them in various fields of Chemistry. The new and updated syllabus is based on disciplinary approach with vigour and depth taking care of the syllabus is not heavy at the same time it is comparable to the syllabi of other universities at the same level. The students pursuing this course would have to develop understanding of various aspects of the chemistry. The conceptual understanding, development of experimental skills, developing the aptitude for academic and professional skills, obtaining basic ideas and understanding of hyphenated techniques, understanding the fundamental chemical processes and rationale towards application of knowledge are among such important aspects

					nemej		
Course	Course Type	Course code	Hrs/ week	Internal assessment	Semester- end examination	Total	Credits
Physical Chemistry	Core	USC5CH1	3	40	60	100	3
Inorganic Chemistry	Core	USC5CH2	3	40	60	100	3
Organic Chemistry	Core	USC5CH3	3	40	60	100	3
Analytical Chemistry	Core	USC5CH4	3	40	60	100	3
Drugs and dyes	Core	USC5CH5	3	40	60	100	3
Practical I	Core	USC5CP1	3	40	60	100	4
Practical II	Core	USC5CP2	3	40	60	100	4
Practical III	Core	USC5CP3	3	40	60	100	4

Semester - V [Under CBCS Scheme]

Semester - VI [Under CBCS Scheme]

Course	Course	Course	Hrs/	Internal	Semester-end	Total	Credits
	Туре	code	week	assessment	examination		

Physical Chemistry	Core	USC6CH1	3	40	60	100	3
Inorganic Chemistry	Core	USC6CH2	3	40	60	100	3
Organic Chemistry	Core	USC6CH3	3	40	60	100	3
Analytical Chemistry	Core	USC6CH4	3	40	60	100	3
Drugs and dyes	Core	USC6CH5	3	40	60	100	3
Practical I	Core	USC6CP1	3	40	60	100	4
Practical II	Core	USC6CP2	3	40	60	100	4
Practical III	Core	USC6CP3	3	40	60	100	4

Examination Scheme

• Internal Theory examination (40 Marks)

- 1. One Class Test: 20 Marks.
- 2. Continuous Internal Assessment (one tool): 15 Marks
- 3. Active participation: 05 Marks
- External Theory Examination (60 Marks)
- Semester End Practical Examination (50 Marks)

Question Paper Pattern for Semester End Examination

It is recommended that a total of five questions be set, based on the syllabus with due weightage to the number of lectures allotted per topic. The candidates are expected to answer all five questions. Question 5 will be based on all four units and the remaining questions will be based on the units as indicated below.

Question No.	Semester- V	Semester- VI
01	Unit I	Unit I
02	Unit II	Unit II
03	Unit III	Unit III
04	Unit IV	Unit IV
05	From all four units	From all four units

Duration of Examination: 2 hrs.

Question Paper Pattern for Continuous Assessment (Total Marks 20 to be converted in 10 marks)

Marks	Group Project*/ Individual Project	Presentation and write-up	Practical Skills	Open book test	Quiz
5	Hypothesis/Topic of the project	Presentation skill	Demonstration of skill	High order thinking questions	Quiz on application of subject in
5	Actual laboratory work/Field work	Knowledge	Viva	(HOTS)	real life
5	Result/output	Quality of ppt	Report		
5	Dissertation/Report	Writing skill	Problem solving ability		

Note

Group Project*

- 1) Define number of students
- 2) Every student will get equal marks if the same contribution

3) if any student without any kind of involvement in the project, guide will take the decision on his share

Question Paper Pattern for Practical Examination

End Practical Examination per practical course (100 Marks)

- Laboratory Work (80 Marks)
- Journal (10 Marks)
- Viva (10 Marks)
- The practical examination will be held for 6.0 hrs.
- The candidates will be examined practically and orally

There will not be any internal examination for practical

Physical Chemistry

Course Description				
Semester	V			
Course Name	Physical Chemistry			
Course Code	USC5CH1			
Eligibility for the Course	S.Y.B.Sc.			
Credit	2.5			
Hours	48 h (60L)			

Course Objectives

- To provide a comprehensive understanding of rotational, vibrational, and Raman spectroscopy, enabling students to apply these techniques effectively in the analysis of molecular structure and behaviour.
- To develop a deep comprehension of thermodynamics and their applications in predicting chemical reactions.
- To study the crystalline and amorphous structures of solids.
- To understand the relationship between the structure of solids and their properties, including electrical conductivity and mechanical properties.
- To learn the principles of nuclear reactions, radioactivity, and nuclear decay processes.
- To comprehend the applications of nuclear chemistry, such as radioisotope dating and nuclear medicine.
- To examine the properties and behaviour of interfaces, including adsorption and catalysis.
- To explore the role of surface chemistry in various industries, such as catalysis in chemical processes.
- To understand the fundamental processes involved in photochemistry, including photoexcitation and photodecomposition.
- To develop problem-solving skills, especially in the context of thermodynamics and spectroscopy.
- To connect the concepts of molecular spectroscopy, chemical thermodynamics, solid-state chemistry, nuclear chemistry, surface chemistry, and photochemistry to analyse real-world chemical systems.
Course Outcomes

COs	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Memorize concept of dipole moment, polar and non- polar molecules, examples of colligative properties, basic terms of radioactivity and Surface tension.	Ι
CO2	DifferentiateRotationalSpectroscopyandVibrationalSpectroscopyRamanSpectroscopy,FreundlichAdsorptionIsothermand LangmuirAdsorptionIsotherm	III
CO3	Explain first and second law of photochemistry Raoult's law, Clapeyron equation, van't Hoff Factor.	Π
CO4	Apply spectroscopic data for solving different numerical, lattice space information for determination structure of unit cell and Carbon Dating method	IV

Module / Unit	Topics MOLECIILAR SPECTROSCOPY	(15L)
1.	MOLLEULAR SI LE IROSEOI I	
1.1	Rotational Spectrum:	
	Introduction to dipole moment, polarization of a bond, bond moment,	
	molecular structure, Rotational spectrum of a diatomic molecule, rigid rotor,	
	moment of inertia, energy levels, conditions for obtaining pure rotational	
	spectrum, selection rule, nature of spectrum, determination of internuclear	
	distance and isotopic shift.	
1.2	Vibrational spectrum:	
	Vibrational motion, degrees of freedom, modes of vibration, vibrational	
	spectrum of a diatomic molecule, simple harmonic oscillator, energy levels,	
	zero-point energy, conditions for obtaining vibrational spectrum, selection	
	rule, nature of spectrum.	
1.3	Vibrational-Rotational spectrum of diatomic molecule:	
	Energy levels, selection rule, nature of spectrum, P and R branch lines.	
	Anharmonic oscillator - energy levels, selection rule, fundamental band,	
	overtones. Application of vibrational-rotationalspectrum in determination of	
	force constant and its significance. Infrared spectra of simple molecules like	
	H_2O and CO_2 .	

1.4	Raman Spectroscopy:	
	Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering,	
	nature of Raman spectrum, Stoke's lines, anti-Stoke's lines, Raman shift,	
	quantum theory of Raman spectrum, comparative study of IR and Raman	
	spectra, rule of mutual exclusion- CO ₂ molecule.	
II 2 1	CHEMICAL THERMODYNAMICS	(9L)
2.1	Colligative properties:	
2.1.1	Vanour pressure Reputt's law and relativelowering of vanour pressure	
212	Solutions of Solid in Liquid.	
2.1.2		
	Elevation in boiling point of a solution, thermodynamic derivation relating	
	elevation in boiling point of the solution and molar mass of non-volatile solute.	
	Depression in freezing point of a solution, thermodynamic derivation relating	
	the depression in the freezing point of asolution and the molar mass of the	
	non-volatile solute.	
2.1.3	Osmotic Pressure:	
	Introduction, thermodynamic derivation of Van't Hoff equation, Van't Hoff	
	Factor, Reverse Osmosis.	
2.2	THE SOLID STATE	(6L)
2.2.1	Introduction Space lattice, lattice sites, Lattice planes, Unit cell. Laws of	
	crystallography: (i) Law of constancy of interfacial angles (ii) Law of rational	
	indices (iii) Law of crystal symmetry. Weiss indices and Miller indices.	
2.2.2	Cubic lattice and types of cubic lattice, planes or faces of a simple cubic system,	
	spacing of lattice planes. Diffraction of X-rays, Derivation of Bragg's equation.	
222	Determination of exercicil structure of NeCl and VCl on the basis of Dreav's	
2.2.3	Determination of crystal structure of NaCl and KCl on the basis of Bragg's	
	equation. Numerical problems.	
III 3.0	NUCLEAR CHEMISTRY	(15L)
3.1	Introduction:	
	Nuclear disintegration/ Nuclear radioactivity, Types of nuclear radiations (α -	
	particle, β - particle and γ -ray).	
	Basic terms-radioactive constants (decay constant, half-life and average life)	
	and units of radioactivity.	
3.2	Detection and Measurement of Radioactivity:	

	Types and characteristics of nuclear radiations, behavior of ion pairs in	
	electric field, detection and measurement of nuclear radiations using G.M.	
	Counter and Scintillation Counter.	
3.3	Application of use of radioisotopes as Tracers:	
	Chemical reaction mechanism, age determination - dating by C^{14} .	
3.4	Nuclear reactions:	
	Nuclear transmutation (one example for each projectile), artificial	
	radioactivity, Q - value of nuclear reaction, threshold energy.	
3.5	Fission Process:	
	Fissile and fertile material, nuclear fission, chain reaction, factor controlling	
	fission process. multiplication factor and critical size or mass of	
	fissionablematerial, nuclear power reactor and breeder reactor.	
3.6	Fusion Process:	
	Thermonuclear reactions occurring on stellar bodies and earth.	
IV	SURFACE CHEMISTRY	(07 L)
4.1	Adsorption:	
4.1 4.1.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's	
<u>4.1</u> 4.1.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for	
<u>4.1</u> 4.1.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface	
4.1.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation.	
4.1 4.1.1 4.1.2	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY	(08 L)
4.1 4.1.1 4.2 4.2.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes.	(08 L)
4.1 4.1.1 4.2 4.2 4.2.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes.	(08 L)
4.1 4.1.1 4.2 4.2.1 4.2.2	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation). Stark - Finstein law.	(08 L)
4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.2	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield. Beasons for high and low quantum yield	(08 L)
4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.2 4.2.3 4.2.3	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photosensitized reactions – Dissociation of H2. Photosynthesis	(08 L)
$ \begin{array}{r} 4.1 \\ 4.1.1 \\ 4.1.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ \end{array} $	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photosensitized reactions – Dissociation of H2, Photosynthesis Photodimerization of anthracene. decomposition of HI and HBr	(08 L)
$ \begin{array}{r} 4.1 \\ 4.1.1 \\ 4.1.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.5 \\ 4.2.6 \\ \end{array} $	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photodimerization of anthracene, decomposition of HI and HBr Iablonski diagram depicting various processes occurring in the excited state:	(08 L)
$ \begin{array}{r} 4.1 \\ 4.1.1 \\ 4.1.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \\ \end{array} $	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photosensitized reactions – Dissociation of H2, Photosynthesis Photodimerization of anthracene, decomposition of HI and HBr Jablonski diagram depicting various processes occurring in the excited state: Qualitative description of fluorescence and phosphorescence	(08 L)
$ \begin{array}{r} 4.1 \\ 4.1.1 \\ 4.1.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \\ 4.2.6 \\ 4.2.7 \\ \end{array} $	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photodimerization of anthracene, decomposition of HI and HBr Jablonski diagram depicting various processes occurring in the excited state: Qualitative description of fluorescence and phosphorescence Chemiluminescence	(08 L)
$ \begin{array}{r} 4.1 \\ 4.1.1 \\ 4.1.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \\ 4.2.7 \\ 4.2.8 \\ \end{array} $	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms. Langmuir's adsorption isotherm (Postulatesand derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation. PHOTOCHEMISTRY Introduction Difference between thermal and photochemical processes. Laws of photochemistry: Grotthus - Draper law, Lambert's law, Lambert Beer's law (with derivation), Stark - Einstein law. Quantum yield, Reasons for high and low quantum yield. Photosensitized reactions – Dissociation of H2, Photosynthesis Photodimerization of anthracene, decomposition of HI and HBr Jablonski diagram depicting various processes occurring in the excited state: Qualitative description of fluorescence and phosphorescence Chemiluminescence Numerical problems	(08 L)

References

- **Physical Chemistry**, Ira Levine, 5th Edition, 2002 Tata McGrawHill Publishing Co.Ltd.
- **Physical Chemistry**, P.C. Rakshit, 6th Edition, 2001, Sarat BookDistributors, Kolkata.

- Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]
- Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- **Physical Chemistry**, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.
- Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.
- **Principles of Physical Chemistry** B.R. Puri, L.R. Sharma, M.S. Pathania, VISHAL PUBLISHING Company, 2008.
- Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons (Asia) Ple. Ltd., Singapore, 2007.
- **Polymer Science**, V.R. Gowariker, N.V. Viswanathan, Jayadevan Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011.
- Chemical Kinetics, K. Laidler, Pearson Education India, 1987.

P-I Physical (SEM-V)-Practical's

COs	After completing the course, Student will able to:	Bloom Taxonomy
		Level (BTL)
CO1	Handle and Understand principles of different instruments like	Ι
	Colorimetry, Potentiometry, Conductometry.	
CO2	Determine molecular weight of any high polymer polyvinyl	III
	alcohols by viscosity measurement.	
CO3	Interpret the order of reaction graphically from given experimental	III
	data and to calculate the specific rate constant.	

Sr. No.	ТҮРЕ	PRINCIPLE	TITLE
1	Non- Instruments	Colligative properties	To determine the molecular weight of compound by Rast Method
2		Chemical Kinetics	To determine the order between $K_2S_2O_8$ and KI by fractional change method.
3		Surface phenomena	To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm.
4	Instruments	Potentiometry	To determine the solubility product and solubility of AgCl potentiometrically using chemical cell.
5		Conductometry	To determine the velocity constant of alkaline hydrolysis of ethyl acetate by conductometric method.
6		pH-metry	To determine acidic and basic dissociation constants of amino acid and hence to calculate isoelectric point.

Reference books

- Practical Physical Chemistry 3rd edition A.M. James and F.E. Prichard, Longman publication
- Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill
- Advanced Practical Physical Chemistry J.B. Yadav, Goel Publishing House
- Advanced Experimental Chemistry Vol-I J.N. Gurtu and R Kapoor, S. Chand and Co.
- Experimental Physical Chemistry by V.D. Athawale.
- Senior Practical Physical Chemistry by B.D. Khosla, V.C. Garg and A. Gulati, R Chand and Co.

Semester V (Theory)

Course Description			
Semester	V		
Course Name	Inorganic Chemistry		
Course Code	USC5CH2		
Eligibility for the Course	S.Y.B.Sc.		
Credit	2.5		
Hours	48 h (60L)		

Course Objectives:

- 1. To encourage students to analyze and integrate concepts relevant to graduate level Inorganic chemistry.
- 2. To understand concept of molecular symmetry and assign the point group to given molecule.
- 3. To understand the bond formation in heteronuclear diatomic molecules and poly atomic species with special reference to MOT.
- 4. To study the structures of solids and concept of superconductivity.
- 5. To know the chemistry of inner transition elements with reference to its position in periodic table, Properties, extraction, separation and applications.
- 6. To know the various methods of classifications of inorganic polymers, chemistry of borazine and silicones.
- 7. To study the Chemistry of non-aqueous solvents, interhalogens and pseudohalogens.

Course Outcomes:

COs.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO 1	Explain concept of Superconductivity, types of super conductors and its applications, imperfections in solids and their effect on properties, chemistry of inner transition elements, extraction and applications, chemistry of non-aqueous solvents	Understand
CO 2	Explain electrical properties of conductors, insulators and semiconductors on the basis of Band theory. Explain Inorganic Polymers, Chemistry of interhalogens and Pseudo halogens.	Understand
CO 3	Assign the point group for given molecules using basic concepts of molecular symmetry and construct molecular orbital diagrams for heteronuclear diatomic molecules and polyatomic species.	Apply
CO 4	Determine packing density of different types of cubic unit cells	Evaluate

Unit		Topics	
I	1.0	MOLECULAR SYMMETRY AND CHEMICAL BONDING	(6L)
	1.1	MOLECULAR SYMMETRY	
	1.1.1	Introduction and Importance of Symmetry in Chemistry.	
	1.1.2	Symmetry elements and Symmetry operations.	
	1.1.3	Concept of a Point Group with illustrations using the following pointgroups	
		:(i) $C \Box V$ (ii) $D \Box h$ (iii) $C2V$ (iv) $C3v$ (v) $C2h$ and (vi) $D3h$	
	1.2	MOLECULAR ORBITAL THEORY FOR HETERONUCLEAR	(9L)
		DIATOMIC MOLECULES AND POLYATOMIC SPECIES	
	1.2.1.	Comparison between homonuclear and heteronuclear diatomic molecules.	
	1.2.2	Heteronuclear diatomic molecules like CO, NO and HCl, appreciation	
		of modified MO diagram for CO.	
	1.2.3	Molecular orbital theory for H_3 and H_3^+ (correlation diagram expected).	
	1.2.4	Molecular shape to molecular orbital approach in AB ₂ molecules. Application of	2
		symmetry concepts for linear and angular species considering σ - bonding only.	
		(Examples like: i) BeH ₂ , ii) H ₂ O).	
	2.0	SOLID STATE CHEMISTRY	
	2.0		(1 1 7)
	2.1	STRUCTURES OF SOLIDS	(11L)
	2.1.1	Explanation of terms viz. crystal lattice, lattice point, unit cell and	
		lattice constants.	
	2.1.2	Closest packing of rigid spheres (hcp, ccp), packing density in simple	
		cubic, bcc and fcc lattices. Relationship between density, radius of unit cell and	
		lattice parameters.	
	2.1.3	Stoichiometric Point defects in solids (discussion on Frenkel and	
		Schottky defects expected).	
	2.1.4	Metallic Bond: Band theory, Explanation of electrical properties of conductors,	
		insulators and semiconductors (n- and p- types) on the basis of Band theory.	
	2.2	SUPERCONDUCTIVITY	(4L)
	2.2.1	Discovery of superconductivity.	
	2.2.2	Explanation of terms like superconductivity, transition temperature, Meissner	
		effect.	
	2.2.3	Different types of superconductors' viz. conventional superconductors, Organic	+
1		superconductors, alkali metal fullerides, high temperature superconductors.	

III	3.0	CHEMISTRY OF INNER TRANSITION ELEMENTS	(15L)
	3.1	Introduction: Position in periodic table and electronic configuration of	
		Lanthanides and actinides.	
	3.2	Chemistry of Lanthanides with reference to (i) lanthanide contraction and its	
		consequences(ii) Oxidation states (iii) Ability to form complexes (iv) Magnetic	
		and spectral properties	
	3.3	Occurrence, extraction and separation of lanthanides by (i) Ion Exchange method	1
		and (ii) Solvent extraction method (Principles and technique)	
	3.4	Applications of lanthanides	
	3.5	Chemistry of Uranium with reference to occurrence, extraction (solvent	
		extraction method), properties and applications.	
IV	4.0	SOME SELECTED TOPICS	
	4.1	CHEMISTRY OF NON-AQUEOUS SOLVENTS	(5L)
	4.1.1	Classification of solvents and importance of non-aqueous solvents.	
	4.1.2	Characteristics and study of liquid ammonia, dinitrogen tetra oxide as non-	
		aqueous solvents with respect to: (i) acid-base reactions and (ii) redox reactions.	
	4.2	Inorganic Polymers	(5L)
	4.2.1	Introduction, Various methods of classifications with examples.	
	4.2.2	Chemistry of borazine and silicones with reference to preparations, properties,	
		structure, bonding and applications.	
	4.3	Chemistry of interhalogens	(3L)
	4.3.1	Introduction, Preparation, Uses, Bonding.	
	4.4	Chemistry of Pseudohalogens:	(2L)
	4.3.2	Introduction, Preparation, reactions and structures.	

REFERENCES:

Unit-I

- 1. Per Jensen and Philip R. Bunker, Fundamentals of Molecular Symmetry, Series in Chemical Physics, Taylor & Francis Group
- 2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
- 3. Derek W. Smith, Molecular orbital theory in inorganic chemistry Publisher: Cambridge

University Press

- C. J. Ballhausen, Carl Johan Ballhausen, Harry B. Gray, Molecular Orbital Theory: An Introductory LectureNote and Reprint Volume Frontiers in chemistry Publisher W.A. Benjamin, 1965
- 5. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west PressPvt. Ltd., New Delhi.
- 6. Satya Prakash, G.D.Tuli, R.D. Madan, Advanced Inorganic Chemistry. S. Chand & Co. Ltd

Unit-II

- 1. C. N. R. Rao, Advances in Solid State Chemistry
- 2. R.G. Sharma, Superconductivity: Basics and Applications to Magnets
- 3. Michael Tinkham ,Introduction to Superconductivity: Vol I (Dover Books on Physics)
- 4. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 5. Richard Harwood, Chemistry, Cambridge University Press,
- 6. Satya Prakash, G.D. Tuli, R.D. Madan, Advanced Inorganic Chemistry. S. Chand & Co Ltd.
- 7. Lesley E. Smart, Elaine A. Moore Solid State Chemistry: An Introduction, 2nd Edition CRC Press,

Unit-III

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 3. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
- 5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Unit-IV

- 1. B. H. Mahan, University Chemistry, Narosa publishing.
- 2. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 3. J. D. Lee, Concise Inorganic Chemistry, 4th Edn., ELBS,
- 4. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 5. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 6. Gary Wulfsberg, Inorganic chemistry, Viva Books Pvt, Ltd. (2002).
- 7. Richard Harwood, Chemistry, chapter 10 Industrial inorganic chemistry
- 8. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 9. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993
- 10.Satya Prakash, G.D. Tuli, R.D. Madan, Advanced Inorganic Chemistry.S. Chand & Co Ltd 2004
- 11. James E. Mark, R. West, H. Allcock, Inorganic Polymers prentice hall advanced reference series physical and life sciences, 1992.
- 12.Ronald D. Archer, Inorganic and Organometallic Polymers Special Topics in Inorganic Chemistry, 2001.

Course Description				
Semester	V			
Course Name	Inorganic Chemistry Practical's			
Course Code	USC5CP1			
Eligibility for the Course	S.Y.B.Sc.			
Credit	1.50			
Hours	48 h (60L)			

Course Outcomes:

COs.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO 1	Develop the practical skills for preparation of different inorganic metalcomplexes	Understand
CO 2	Examine the percentage purity of the inorganic compounds qualitatively and quantitively and impurity identification.	Analyse

I- Inorganic Preparations:

- 1. Preparation of Potassium diaquobis-(oxalato)cuprate (II)
- 2. Preparation of hexamminenickel (II) chloride, [Ni (NH₃)₆]Cl_{2.}
- 3. Preparation of bis-acetylacetonato copper (II)

II- Percentage Purity:

Determination of percentage purity of the given water-soluble saltand qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of transition metal ions)

References

- 1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N. Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semi micro qualitative inorganic analysis. Fifth edition.

Organic Chemistry

Course Description			
Semester	V		
Course Name	Organic Chemistry		
Course Code	USC5CH3		
Eligibility for the Course	S.Y.B.Sc.		
Credit	2.5		
Hours	48 h (60L)		

Course Objectives

- To bring organic chemistry to students in the most thought-provoking and comprehensible way possible.
- Develop analytical thinking and apply the same for understanding principles, proposing mechanism and logical conclusions.
- Understanding of the interdisciplinary nature of organic chemistry and emerging trends in organic chemistry.
- To provide an overview and familiarize the students with the basic principles of organic reactions and its stereochemistry.
- Comprehensive and accessible overview of spectroscopy to build the necessary competency among the students for interpretation of spectral data in structure determination of organic compounds.
- To know the structure, elucidation and reactivity of the number of natural products and synthetic polymers.
- Competency in design and planning of synthesis and carry out with Good Laboratory Practices.
- Competency in handling instruments and techniques of separation of mixtures of organic compounds.

Course Outcomes

COs	After completing the course, Student will able to:	Bloom
		Taxonomy
		Level (BTL)
CO1	Explain the fate of the excited molecule in photochemistry and	II
	systematic study of photochemical reactions.	
CO2	Apply the concepts in writing and predicting the mechanism of	III
	organic reactions.	
CO3	Examine the spectral data of UV-Visible, IR, NMR and Mass	IV
	spectroscopy for structure elucidation of organic compounds.	
CO4	Construct the structures of carbohydrates and its inter-	III
	conversion, describe the structures of proteins, nucleic acids and	
	its components.	

Module / Unit	Topics 1.1 MECHANISM OF ORGANIC REACTIONS	(10L)	
I			
1.1.1.	Concept and definitions: Nucleophiles: Hard and soft nucleophiles, ambient		
	nucleophiles Electrophiles: Hard and Soft electrophiles, ambient		
	electrophiles		
	Types of mechanism, Types of reactions		
1.1.2	Neighbouring group participation in nucleophilic substitution reactions:		
	participation of lone pair of electrons, kinetics and stereochemical outcome.		
1.1.3	Acyl nucleophilic substitution (Tetrahedral mechanism): Acid catalyzed		
	esterification of carboxylic acids $\left(A_{AC}^2\right)$ and base promoted hydrolysis of		
	esters (B_{AC}^2) .		
1.1.4	Pericyclic reactions, classification and nomenclature		
	1.1.4.1 Electro cyclic reactions (ring opening and ring closing), cycloaddition,		
	sigmatropic rearrangement, group transfer reactions, cheletropic reaction		
	(definition and one example of each type)		
	1.1.4.2 Pyrolytic elimination: Cope, Chugaev, pyrolysis of acetates		
1.2	PHOTOCHEMISTRY	(5L)	
1.2.1	Introduction: Difference between thermal and photochemical reactions.		
	Singlet and triplet states, allowed and forbidden transitions, Jablonski		
	diagram, fate of excited molecules, Photosensitization.		
1.2.2	Photochemical reactions of olefins: photoisomerization, photochemical		
	rearrangement of 1,4- dienes (di- π methane)		
1.2.3	Photochemistry of carbonyl compounds: Norrish I, Norrish II cleavages.		

	Photoreduction (e.g. benzophenone to benzpinacol)	
II		(15L)
2.1	STEREOCHEMISTRY-I	(5L)
2.1.1	Molecular chirality and elements of symmetry: Mirror plane symmetry,	
	inversion center, rotation-reflection (alternating) axis.	
2.1.2	Chirality of compounds without a stereogenic center: cumulenes and	
	biphenyls.	
2.2	CARBOHYDRATES	(10L)
2.2.1	Introduction: classification, reducing and non-reducing sugars, DL notation	
2.2.2	Structures of monosaccharaides: Fischer projection (4-6 carbon	
	monosaccharaides) and Haworth formula (furanose and pyranose forms of	
	pentoses and hexoses) Interconversion: open chain and Haworth forms of	
	monosaccharaides with 5 and 6 carbons. Chair conformation with	
	stereochemistry of D-glucose, Stability of chair form of D-glucose	
2.2.3	Stereoisomers of monosaccharide: epimers, anomers	
2.2.4	Mutarotation and its mechanism	
2.2.5	Chain lengthening & shortening reactions: Modified Kiliani-Fischer synthesis	
	(D-arabinose to D-glucose and D-mannose), Ruff Degradation (D-glucose to	
	D-arabinose)	
2.2.6	Reactions of D-glucose and D-fructose: (a) Osazone formation (b) reduction:	
	H ₂ /Ni, NaBH4 (c) oxidation: bromine water, HNO ₃ , HIO ₄ (d) acetylation (e)	
	methylation: (d) and (e) with cyclic pyranose forms	
2.2.7	Biologically important sugar: 2DG	
III 3.0		(15L)
3.1	IUPAC NOMENCLATURE	(4L)
	IUPAC Systematic nomenclature of the following classes of compounds	
	(including compounds up to two substituents / functional groups):	
3.1.1	Bicyclic compounds-spiro, fused and bridged (up to 11 carbon atoms)-	
	saturated and unsaturated compounds.	
3.1.2	Biphenyls	
3.1.3	Cumulenes with up to 3 double bonds	
3.2	HETEROCYCLIC CHEMISTRY	(8L)
3.2.1	Introduction, Nomenclature of monocyclic (5-6 membered) heterocycles	
	(up to two hetero atoms) (Hantzsch-Widman)	
3.2.2	Reactivity and reactions of pyridine-N-oxide: halogenation, nitration and	

	reaction with NaNH ₂ /liq.NH ₃ , n-BuLi.	
3.2.3	Reactivity and reactions of pyrazole: nitration, halogenation and acylation	
3.2.4	Reactivity and reactions of imidazole: nitration, halogenation and	
	C-metallation	
3.2.5	Reactivity and reactions of thiazole: nitration, halogenation and C-metallation	
3.2.6	Preparation of pyridine-N-oxide, pryazole (from 1,3-dicarbonyl compound)	
	imidazole (from α -halo carbonyl compounds) thiazole (Hantzsch synthesis	
	and Gabriel synthesis)	
3.3	AGROCHEMICALS	(3 L)
3.3.1	General introduction & scope, meaning & examples of insecticides,	
	herbicides, fungicide, rodenticide, pesticides, plant growth regulators.	
3.3.2	Advantages & disadvantages of agrochemicals	
3.3.3	Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan	
3.3.4	Bio pesticides – Neem oil & Karanj oil.	
IV	4.0 SPECTROSCOPY	(15L)
4.1	Introduction: Electromagnetic spectrum, units of wavelength and frequency	
4.2	UV-Visible spectroscopy: Basic theory, solvents, nature of UV-Visible	
	spectrum, concept of chromophore, auxochrome, bathochromic and	
	hypsochromic shifts, hyperchromic and hypochromic effects, chromophore-	
	chromophore and chromophore-auxochrome interactions.	
4.3	IR spectroscopy: Basic theory, selection rule, fingerprint region and	
	functional group region, characteristic IR peaks for different functional	
	groups.	
4.4	PMR spectroscopy: Basic theory of PMR, Nature of PMR spectrum,	
	reference standard, solvents, chemical shift, factors affecting chemical shift:	
	Inductive effect and anisotropic effect (with reference to acetylene, benzene	
	and aldehyde), spin-sin coupling and coupling constant, D2O exchange	
	technique. Application of PMR in structure determination	
4.5	Mass spectrometry: Basic theory, Nature of mass spectrum, Importance of	
	molecular ion peak, base peak and isotopic peaks. Nitrogen rule. General rules	
	for fragmentation. Fragmentation of alkanes and aliphatic carbonyl	
	compounds	
4.6	Spectral characteristics of following classes of organic compounds, including	
	benzene and monosubstituted benzenes, with respect to IR and PMR: (1)	
	alkanes (2) alkenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl	
	compounds (7) Carboxylic acid, esters and amides (8) amines (broad regions	
	characteristic of different groups are expected).	

4.7	Problems of structure elucidation of simple organic compounds using	
	individual or combined use of UV-VIS, IR, PMR and Mass spectral data.	
	(Index of Hydrogen Deficiency should be the first step in solving the	
	problems)	

REFERENCES:

- 1. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 2. Advanced Organic Chemistry by J. March, 6th Edition.
- 3. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 4. Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A. Carey and Richard J. Sundberg, Springer.
- Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001)
- 6. Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.
- 7. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 8. Organic Chemistry, W. G. Solomons, C. B. Fryhle, 8th Edition, Wiley India Pvt. Ltd.
- 9. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 10. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011
- 11. Pericyclic reactions, Ian Fleming, Oxford University press, 1999.
- 12. Organic chemistry, 8th edition, John McMurry.
- 13. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004.
- 14. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 15. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edition
- 16. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd
- 17. Organic Chemistry volume-I & II I L Finar.
- 18. Heterocyclic Chemistry, 5th Edition, John A. Joule and Keith Mills, Wiley publication, 2010.
- 19. Nomenclature of Organic Chemistry: IUPAC recommendations and preferred Names 2013, RSC publication.
- 20. IUPAC nomenclature by S.C. Pal
- 21. Insecticides & pesticides: Saxena A. B., Anmol publication.
- 22. Growth regulators in Agriculture & Horticulture: Amarjit Basra, CRC press 2000.
- 23. Agrochemicals and pesticides: A. Jadhav and T.V. Sathe.
- 24. Spectroscopy of Organic Compounds, P.S. Kalsi, Fourth Edition, New Age International Ltd.
- 25. Spectroscopy, Pavia, Lampman, Kriz, Vyvyan
- 26. Organic spectroscopy (Second edition), Jag Mohan, Narosa publication.
- 27. Spectral identification of organic molecules by Silverstein.

P-III Organic (SEM-V)-Practical's

Course code: USC5CP2

COs	After completing the course, Student will able to:	Bloom Taxonomy
		Level (BTL)
CO1	Identify chemical type of components present in binary mixture of	III
	solid-solid mixture and unknown organic compound by micro-	
	scale technique.	
CO2	Apply skills in the separation and qualitative analysis of organic	III
	compounds of solid-solid mixtures by microscale technique	

Separation of Binary solid-solid mixture of organic compounds and identification using micro-scale technique. (2.0 gm mixture to be given)

- 1. Minimum six mixtures to be completed by the students.
- 2. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (2-naphthol, 1-naphthol), water insoluble bases (nitro anilines), water soluble neutral (thiourea) and water insoluble neutral compounds (anilides, amides, m-DNB, hydrocarbons)
- 3. After correct determination of chemical type, the separating reagent should be decided by the student for separation.
- 4. Follow separation scheme with the bulk sample of binary mixture.
- 5. After separation into component A and component B, one component (decided by the examiner) is to be analyzed and identified with m.p.

References for Practical's:

- 1. Practical organic chemistry A. I. Vogel
- 2. Practical organic chemistry H. Middleton
- 3. Practical organic chemistry O.P. Agarwal
- 4. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.

Important Note:

- 1. The candidate is expected to submit a journal certified by the Head of the Department /institution at the time of the practical examination.
- 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

Course Description			
Semester	V		
Course Name	Analytical Chemistry		
Course Code	USC5CH4		
Eligibility for the Course	S.Y.B.Sc.		
Credit	2.5		
Hours	48 h (60L)		

Course Objectives

- To provide a basic knowledge and understanding of essential chemical and physical principles for analytical chemistry.
- To introduce basic and advanced analytical techniques and practical aspects of classical and instrumental analysis.
- To solve problems related to chemical analysis and interpret analytical results.

Course Outcomes

After completion of this course student will be able to

- CO1: Define, and explain the concepts of quality control, quality assurance, grades of chemicals, concentrations and importance of sampling at a basic level
- CO2: Explain the theoretical principals of titrations and apply them for end point detection and selection of suitable indicators
- CO3: Apply the Nernst law to the solvent extraction and describe the principles and processes of solvent extraction and solid phase extraction.
- CO4: Describe the role of analytical instruments in science and allied fields and explain the principles, instrumentation, working of Spectroscopic techniques.

Module/	Course Description	Lectures
Unit		
1.	Introduction to Quality Concepts in Industry, Chemical	15L
	Calculations, and Sampling	
1.1	Quality in Analytical Chemistry	03L
1.1.1	Concepts of Quality, Quality Control and Quality Assurance	
1.1.2	Importance of Quality concepts in Industry	
1.1.3	Chemical Standards and Certified Reference Materials; Importancein	
	chemical analysis	
	Quality of material: Various grades of laboratory reagents	

1.2		Chemical Calculations (Numerical and word problems are	06L
		expected)	
	1.2.1	Inter conversion of various concentration units.	
		(Conversion of concentration from one unit to another unit with	
		examples)	
	1.2.2	Percent composition of elements in chemical compounds	
1.3		Sampling	06L
	1.3.1	Purpose, significance and difficulties encountered in sampling	
	1.3.2	Sampling of solids: Sample size - bulk ratio, size to weight ratio,	
		multistage and sequential sampling, size reduction methods, sampling	
		of compact solids, equipment and methods of samplingof compact	
		solids, sampling of particulate solids, methods and equipment used for	
		sampling of particulate solids.	
	1.3.3	Sampling of liquids: Homogeneous and heterogeneous, Static and	
		flowing liquids.	
	1.3.4	Sampling of gases: Ambient and stack sampling: Apparatus and	
		methods for sampling of gases.	
	1.3.5	Collection, preservation and dissolution of the sample.	
2.		Classical Methods of Analysis (Titrimetry)	15L
2.1		Redox Titrations (Numerical and word Problems are expected)	08L
	2.1.1	Introduction	
	2.1.2	Construction of the titration curves and calculation of Esystem	
		inaqueous medium in case of:	
		(1) One electron system	
		(2) Multielectron system	
	2.1.3	Theory of redox indicators, Criteria for selection of an indicatorUse of	
		diphenyl amine and ferroin as redox indicators	
2.2		Complexometric Titration	07L
	2.2.1	Introduction, construction of titration curve	
	2.2.2	Use of EDTA as titrant and its standardization, absolute and	
		conditional formation constants of metal EDTA complexes,	
		Selectivity of EDTA as a titrant.	
		Factors enhancing selectivity with examples. Advantages and	
		limitations of EDTA as a titrant.	
	2.2.3	Types of EDTA titrations.	
	2.2.4	Metallochromic indicators, theory, examples and applications	
3.		Separation Methods	15L

3.1		Solvent Extraction	12L
	3.1.1	Introduction, Nernst distribution Law, Distribution Ratio, Partition	
		Coefficient.	
		Conditions of extraction: Equilibration time, Solvent volumes,	
		temperature, pH.	
		Single-step and multi- step extraction, Percentage extraction for single	
		step and multistep extraction. Separation factor.	
	3.1.2	Factors affecting extraction: Chelation, Ion pair formation and	
		Solvation	
	3.1.3	Graph of percent extraction versus pH.	
		Concept of [pH]1/2 and its significance (derivation not expected)	
	3.1.4	Batch and continuous extraction, Craig's counter current extraction:	
		Principle, apparatus and applications	
3.2		Solid phase extraction:	03L
		Principle, process and applications with special reference to water	
		and industrial effluent analysis.	
		Comparison of solid phase extraction and solvent extraction.	
4.		Optical Methods	15L
4.1		Basic Components of Spectroscopic Instruments: Sources of Energy,	02L
		Wavelength Selectors, Detectors, Signal Processors	
4.2		Molecular Spectroscopy: UltraViolet-Visible Spectroscopy	04L
	4.2.1	Instrumentation: Single beam and double beam spectrophotometer;	
	4.2.2	Quantitative Applications (Calibration curve method); Qualitative	
		Applications in Photometric titration, Job's method for study of	
		complexes.	
4.3		Atomic Spectroscopy: Flame Emission spectroscopy (FES) and	06L
		Atomic Absorption Spectroscopy (AAS)	
	4.3.1	Introduction, Energy level diagrams, Atomic spectra, Absorption	
		and Emission Spectra	
	4.3.2	Flame Photometry – Principle, Instrumentation (Flame atomizers,	
		types of Burners, Wavelength selectors, Detectors)	
	4.3.3	Atomic Absorption Spectroscopy – Principle, Instrumentation	
		(Source, Chopper, Flame and Electrothermal Atomiser)	
	4.3.4	Quantification methods of FES and AAS – Calibration curve	
		method, Standard addition method and Internal standard method.	
	4.3.5	Comparison between FES and AAS	

	4.3.6	Applications, Advantages and Limitations	
4.4		Turbidimetry and Nephelometry	03L
	4.4.1	Introduction and Principle	
	4.4.2	Factors affecting scattering of Radiation: Concentration, particle size,	
		wavelength, refractive index	
	4.4.3	Instrumentation and Applications	

References

- 1. 3000 solved problems in Chemistry, David E. Goldberg, Schaums Outline
- 2. A guide to Quality in Analytical Chemistry: An aid toaccreditation, CITAC and EURACHEM, (2002),
- 3. A premier sampling solids, liquids and gases, Smith Patricia I, American statistical association and the society for industrial and applied mathematics, (2001)
- 4. Analytical Chemistry, Gary.D Christan, 5th edition
- 5. Analytical Chemistry Skoog, West, Holler, 7th Edition
- 6. Basic Concepts of Analytical Chemistry, by S. M. Khopkar new Age International (p) Limited
- 7. Chemical methods of separation, J A Dean, VanNostrand Reinhold, 1969
- 8. Fundamentals of Analytical Chemistry by Skoog andWest, 8th Edition
- Handbook of quality assurance for the analytical chemistry laboratory, 2ndEdn., James P. Dux Van Nostrand Reinhold, 1990
- Instrumental methods of Analysis, by Dr Supriya S Mahajan, Popular Prakashan Ltd
- Instrumental methods Of Analysis, by Willard Merritt Dean, 7thEdition, CBS Publisher and distribution Pvt Ltd
- 12. Instrumental Methods of Chemical Analysis by B.K.Sharma Goel Publishing House
- 13. Principles of Instrumental Analysis, 5th Edition, BySkoog, Holler, Nieman
- Quality control and Quality assurance in Analytical Chemical Laboratory, Piotr Konieczka and Jacek Namiesnik, CRC press (2018)
- 15. Quality in the Analytical Chemistry Laboratory, Elizabeth Prichard, Neil T. Crosby,

Florence, John Wiley and Sons, 1995

- 16. Solvent extraction and ion exchange, J Marcus and A. S.Kertes Wiley INC 1969
- Solvent Extraction of Metals, Anil Kumar De, Shripad Moreshwar Khopkar, Robert Alexander Chalmers Van Nostrand Reinhold Company, 1970
- Solid-Phase Extraction: Principles, Techniques, and Applications By Nigel J.K. Simpson 1st Edition, CRC Press 2000.
- 19 Instrumental methods of chemical analysis, by H. Kaur Pragati Prakashan, Meerut.
- 20

Course Description				
Semester	V			
Course Name	Practical (Analytical Chemistry)			
Course Code	USC5CP2			
Eligibility for the	S.Y.B.Sc.			
Course				
Credit	1.5			
Hours	24L			

Spectroscopy by B. K., Sharma, Goel Publishing House, Meerut. 2006.

Course Objectives

- To develop laboratory skills
- To acquaint the students with various analysis, and separation methods

Course Outcomes

After completion of this course students will be able to

- CO1: Demonstrate the skills in quantitative analysis of the real samples such as cosmetics, environmental samples, fertilizers etc., apply appropriate methods to obtain experimental data and interpret it.
- CO2: Use instrumental techniques for the estimation of various samples, and practice calibration of instruments and preparation of standards and references

Title of Experiments

- 1. Colorimetric determination of fluoride in given water sample.
- 2 Estimation of magnesium content in Talcum powder by complexometry, using standardized solution of EDTA
- 3 To determine potassium content of a Fertilizer by Flame Photometry (Calibration curvemethod).

- 4 Estimation of Fe^{2+} in Mohr's salt by redox titration.
- 5 To determine the amount of sulphate in given water sample turbidimetrically.
- 6 Extraction of I_2 from aqueous solution of I_2/KI in single step and multiple extraction using hexane as an organic solvent.

References

1.

- Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J Memdham and R C Denney, ELBS with Longmann (1989).
- 2 Vogel's Textbook of Quantitative Chemical analysis, Sixth edition,
- . Mendham et.al

1.1 General Introduction to Drugs

Drugs and Dyes

Course Description			
Semester	\mathbf{V}		
Course Name	Drugs and Dyes		
Course Code	USC5CH5		
Eligibility for the Course	S.Y.B.Sc.		
Credit	2.5		
Hours	48 h (60L)		

COs. No.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Define the routes of administration, methods of ingestion, tolerance, withdrawal and interactions of these drugs with other psychoactive and non-psychoactive drugs.	Remember
CO2	Explain details about the pharmacodynamics agents used for the treatment of different diseases side effects and synthesis.	Understand
CO3	Classify the dyes based on applications and dyeing methods	Understand
CO4	Make use of Unit processes required for the synthesis of dyes intermediates	Apply
Unit	Course Description	Hrs

	Definition of a drug, sources of drugs, requirements of an ideal drug,	15
	classification of drugs (based on therapeutic action), Nomenclature of drugs:	
	Generic name, Brand name, Systematic name Definition of the following	
	medicinal terms: Pharmacon, Pharmacology, Pharmacophore, Prodrug, Half –	
	life efficiency, LD ₅₀ , ED ₅₀ ,GI ₅₀ Therapeutic Index. Brief idea of the following	
	terms: Receptors, Agonists, Antagonists, Drug-receptor interaction, Drug	
	Potency, Bioavailability, Drug toxicity, Drug addiction, Spurious Drugs,	
	Misbranded Drugs, Adulterated Drugs, Pharmacopoeia	
	1.2 Routes of Drug Administration and Dosage Forms	
	Oral and Parenteral routes with advantages and disadvantages.	
	Formulations & combination formulation, Different dosage forms (including	
	Patches & Adhesives, emphasis on sustained release formulations and enteric	
	coated tablets).	
	1.3 Pharmacodynamic agents: A brief introduction of the following	
	pharmacodynamic agents and the study with respect to their chemical structure,	
	chemical class, therapeutic uses, and side effects.	
	CNS Drugs:	
	Classification based on pharmacological actions: CNS Depressants & CNS	
	Stimulants. Concept of sedation and hypnosis, anaesthesia.	
	Psychoactive Drugs:	
	Introduction, Classification, Synthesis of Diazepam, (Oxazepam,	
	Alprazolam)	
2.		
	2.1 Analgesics, Antipyretics and Anti-inflammatory Drugs.	15
	Analgesics and Antipyretics	
	 Morphine (Phenanthrene alkaloids) 	
	• Tramadol (Cyclohexanols) (Synthesis from salicylic acid)	
	• Aspirin (Salicylates)	
	Paracetamol (p-Amino phenols)	
	Anti-inflammatory Drugs	
	Mechanism of inflammation and various inflammatory conditions	
	Steroids: Prednisolone Retamethasone	
	 Sodium Diclofenac Aceclofenac (N- Aryl anthranilicacida) 	
	(Synthesis from 2.6 dishlaradinhanyl amina)	
	(Synthesis from 2,0-ultinoroulphenyi annne)	

 Diphenhydra 	amine (Ethanol a	mines)		
Cetrizene	(Piperazine)	(Synthesis	from	4-
Chlorobenz	hydryl chloride)		
Chlorphenira	amine maleate (E	Ethyl amines)		
Pantoprazole (Benzi	midazoles)			
2.3 Cardiovascular	drugs			
Classification based	on pharmacolog	ical action		
Isosorbide d	initrate (Nitrates))		
 Valsartan (A 	mino acids) (stru	cture not expec	cted)	
 Atenolol (At 	yloxy propanol a	amines)		
(Synthesis f	rom 3-Hydroxy	phenyl acetam	nide)	
Amlodipine	(Pyridines)			
Frusemide /I	Furosemide (Sulf	amoyl benzoic	acid)	
Rosuvastatin	(Pyrimidine)			
2.4 Antidiabetic Ag	gents			
General idea and typ	pes of diabetes; I	nsulin therapy		
• Glibenclami	de (Sulphonyl ur	eas)		
• Metformin (Biguanides)			
Dapagliflozi	n (Pyranose)			
Pioglitazone (Thiazo	olidinediones) (S	ynthesis from	2-(5-ethylj	pyridin-2-yl)
ethanol)				
2.5 Antiparkinsoni	sm Drugs			
Idea of Parkinson's	disease.			
Procyclidine	hydrochloride (Pyrrolidines)		
• Ethopropazi	ne hydrochloride	(Phenothiiazin	es)	
Levodopa (Amino a	cids) (Synthesis	from Vanillin		
	~			
2.6 Drugs for Resp	iratory System			1 1'1 <i>-</i>
General idea	of: Expecto	orants; Mucolyt	tes; Bro	nchodilators;
Decongestants; Anti	tussives			

	Ambroxol (Cyclohexanol) (Synthesis from paracetamol)	
	• Salbutamol (Phenyl ethyl amines)	
	Oxymetazoline (Imidazolines)	
	Codeine Phosphate (Opiates)	
3.	3.1 Introduction to the dye-stuff Industry	(5L)
3.1.1	Dyes	
	Definition of dyes, requirements of a good dye i.e. Colour,	
	Chromophore and Auxochrome, Solubility, Linearity,	
	Coplanarity, Fastness, Substantivity, Economic viability.	
	Definition of fastness and its properties and Mordants with examples	
	Explanation of nomenclature or abbreviations of commercial	
	dyes with at least one example suffixes – G, O, R, B, K, L, C, S H, 6B,GK,	
	6GK,	
	Naming of dyes by colour index (two examples) used in dye industries.	
3.1.2	Natural and Synthetic Dyes	
	Natural Dyes: Definition and limitations of natural dyes.	
	Examples and uses of natural dyes w.r.t Heena, Turmeric, Saffron, Indigo,	
	Madder, Chlorophyll -names of the chief dyeing material/s in each natural	
	dye [structures not expected],	
	Synthetic dyes: Definition of synthetic dyes, primaries and intermediates.	
	Important milestones in the development of synthetic dyes – Emphasis on Name	
	of the Scientist, dyes and the year of the discovery is required. (structure is not	
	expected)	
	3.2 Substrates for Dyes : Types of fibres	(3L)
3.2.1	Natural: cellulosic and proteinaceous fibres, examples - wool and cotton	
	structures and names of dyes applied on each of them.	
3.2.2	Semi – synthetic: definition and examples i) Viscose rayon ii) Acetate rayon	
	(Cellulose acetate) [structures not expected]	
3.2.3	Synthetic: Nylon, Polyesters and Polyamides structures and names ofdyes	
	applied on each of them	
3.2.4	Blended fabrics: definition and examples [structures not expected]	
	3.3 Classification of dyes based on applications and dyeing methods	(7L)
3.3.1	Dyeing methods	
	Basic Operations involved in dyeing process:	

	i. Preparation of fibres ii. Preparation of dyebath	
	iii. Application of dyes iv. Finishing	
	Dyeing Method of Cotton Fibres:	
	(i) Direct dyeing (ii) Vat dyeing	
	(iii) Mordant dyeing (iv) Disperse dyeing	
3.3.2	Classification of dyes based on applicability on substrates (examples with	
	structures)	
	i) Acid Dyes- Acid Red 88,	
	ii) Basic Dyes- Methyl violet	
	iii) Direct cotton Dyes- Benzofast Yellow 5GL	
	iv) Azoic Dyes – Diazo components; Fast yellow G	
	Coupling components-Naphthol AS	
	v) Mordant Dyes- Alizarin.	
	vi) Vat Dyes- Indanthrene Red 5GK,	
	vii) Disperse Dyes-Celliton Fast brown 3R,	
	Reactive Dyes- Procion Brilliant Blue HB	
3.3.3	Optical Brighteners: General idea, important characteristics of optical	
	brighteners and their classes [Heterocyclic vinylene derivatives,	
	Naphthalimide derivatives] general structure of each class.	
	1 10	
4	4.1 Colour and Chemical Constitution of Dyes	(4L
4	4.1 Colour and Chemical Constitution of Dyes	(4L)
4 4.1.1	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary	(4L)
4 4.1.1	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour.	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution.	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts.	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones,	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions	(4L)
4 4.1.1 4.1.2	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions 4.2 Unit process and Dye Intermediates	(4L)
4 4.1.1 4.1.2 4.2.1	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions 4.2 Unit process and Dye Intermediates A brief idea of Unit Processes	(4L)
4 4.1.1 4.1.2 4.2.1	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions 4.2 Unit process and Dye Intermediates A brief idea of Unit Processes	(4L)
4 4.1.1 4.1.2 4.2.1	4.1 Colour and Chemical Constitution of Dyes Absorption of visible light, Colour of wavelength absorbed, Complementary colour. Relation between colour and chemical constitution. a) Chromogen, chromophore, auxochrome, quinonoid structures b) Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. Comparative study and relation of colour in the following classes of compounds: Nitrobenzene, Nitroanilines, Nitrophenols, Anthraquinones, Diphenyl polyenes c) Four types of electronic transitions 4.2 Unit process and Dye Intermediates A brief idea of Unit Processes Introduction to primaries and intermediates	(4L)

	(a) Nitration (b) Sulphonation (c) Halogenation	
	(d) Diazotization: (3 different methods & its importance)	
	(e) Ammonolysis (f) Oxidation	
	NB: Definition, Reagents, Examples of each unit processes mentioned above	
	with reaction conditions (mechanism is not expected)	
4.2.2	Preparation of the Dye Intermediates	(8L
)
	4.3.1) Benzene derivatives:	
	i) Benzene sulphonic acid	
	ii) Benzene-1,3- disulphonic acid iii) Sulphanilic acid	
	iv) o/m/p-chloronitrobenzenes	
	v) o/m/p-nitroanilines	
	vi) o/m/p-phenylene diamines	
	vii) Naphthol ASG	
	4.3.2) Naphthalene derivative:	
	ii) Schaeffer's acid	
	ii)Tobias acid	
	iii) Naphthionic acid	
	iv) 1 8-Naphthalimide	
	v) H-acid	
	vi) Naphthol AS	
	4.3.3) Anthracene derivative:	
	i) 1-Nitroanthraquinone	
	ii) 1-Aminoanthraquinone	
	iii) Anthraquinone-2-sulphonic acid	
	iv) Benzanthrone	

References (For Units III & IV):

- Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. Heinrich Zollinger, H. (2003), 3rd Edition, Wiley-VCH, Cambridge
- 2. Chemistry of Synthetic Dyes, Vol I VIII, Venkatraman K., Academic Press 1972
- 3. The Chemistry of Synthetic Dyes and Pigments, Lubs H.A., Robert E Krieger Publishing Company, NY ,1995
- 4. Chemistry of Dyes and Principles of Dyeing, Shenai V.A., Sevak Publications, 1973

Semester-V Practical

COs. No.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Synthesis of simple drugs i.e aspirin	Evaluate
CO2	Estimation of Ibuprofen.	Create
CO3	Determination of iron from given drug sample.	Apply
CO4	Project on cotton dyeing.	Apply

Unit	Course Description	Hrs
1.	Practical's Semester-V	
	1. Estimation of Ibuprofen (back titration method)	30
	2. Determination of iron from given drug sample	
	3. Preparation of Aspirin from salicylic acid.	
	4. Separation of components of natural pigments by paper	
	chromatography (eg: chlorophyll)	
	II] Project:	
	Preparation of Orange II dye (semi-microscale1.0gms)	
	and its use for dyeing differentfabrics	

References:

1. Text book of organic medicinal & pharmaceutical chemistry. Wilson & Gisovolds, 11th Edition by John H Block, John M Beale Jr.

- 2. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 3. Burger's Medicinal Chemistry, Drug Discovery and Development. Abraham and Rotella. Wiley
- 4. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 5. Medicinal chemistry. V.K. Ahluwalia and Madhu Chopra, CRC Press.
- 6. Principle of medicinal chemistry. Vol 1 & 2 S. S. Kadam, K. R. Mahadik, K. G. Bothara
- 7. The Art of Drug synthesis. Johnson and Li. Wiley, 2007.
- 8. The organic chemistry of drug design & drug action. 2 nd ed. By Richard B Silvermann, Academic Press

SEMESTER VI

Physical Chemistry

Course Description			
Semester	VI		
Course Name	Physical Chemistry		
Course Code	USC6CH1		
Eligibility for the Course	S.Y.B.Sc.		
Credit	2.5		
Hours	48 h (60L)		

Course Objectives

- To define electromotive force (EMF) and understand its fundamental concept.
- To comprehend the relationship between voltage, current, and resistance in electrical circuits.
- To describe the internal workings of electrochemical cells and their role in EMF generation.
- To identify and classify polymers based on their origin and properties.
- To analyse the physical and chemical properties of polymers and their industrial significance.
- To define polymers and distinguish between natural and synthetic polymers.
- To understand the fundamental principles of quantum mechanics and its relevance to chemistry.
- To explain the wave-particle duality of electrons and the quantization of energy levels
- To define nanomaterials and understand their unique properties at the nanoscale.
- To describe the various methods for synthesizing and fabricating nanomaterials.
- To understand the principles and physical basis of nuclear magnetic resonance (NMR) spectroscopy.
- To define and explain the phase rule and its components, including phases, components, and degrees of freedom.
- To apply the phase rule to analyze and predict phase equilibria in multi-component systems.

Course Outcomes

COs	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Recall the concept Ionic Strength, activity and activity Coefficient, examples of different polymers, and concept of nanomaterial and nanotechnology	Ι
CO2	Differentiate between Concentration cell and chemical cell natural and artificial polymers.	III
CO3	Understand cell representation rules to representation of cells phase rule to determine degree of freedom	Π
CO4	Apply co-precipitation method for synthesis of new nanomaterials in laboratory	IV

Module / Unit	Topics ELECTROMOTIVE FORCE	(15L)		
1.				
1.1	Introduction			
1.2	Thermodynamics of electrode potentials, Nernst equation for electrode and			
	cell potentials in terms of activities			
1.3	Types of electrodes: Description in terms of construction, representation, half-			
	cell reaction and emf equation for i) Metal – metal ion electrode. ii) Amalgam			
	electrode. iii) Metal – insoluble salt electrode. iv) Gas – electrode. v)			
	Oxidation – Reduction electrode.			
1.4	Reversible and Irreversible cells. i) Chemical cells without transference. ii)			
	Concentration cells with and without transference. iii) Liquid – Liquid junction			
	potential: Origin, elimination and determination			
1.4	Equilibrium constant from cell emf, Determination of the thermodynamic			
	parameters such as ΔG , ΔH and ΔS .			
1.5	Applications of emf measurements: i) Determination of pH of solution using			
	Hydrogen electrode. ii) Solubility and solubility product of sparingly soluble			
	salts (based on concentration cell).			

1.6	Activity and Activity Coefficient: Lewis concept, ionic strength, mean ionic			
	activity and mean ionic activity coefficient of an electrolyte, expression for			
	activities of electrolytes. Debye- Huckel limiting law (No derivation).			
1.7	NY ' 1 11			
1.7	Numerical problems			
II	POLYMERS			
2.1	Basic terms:			
	Macromolecule, monomer, repeat unit, degree of polymerization.			
2.2	Classification of polymers:			
	Classification based on source, structure, thermal response and physical			
	properties.			
2.3	Molar masses of polymers:			
	Number average, Weight average, Viscosity average molar mass,			
	Monodispersity and Polydispersity			
2.4	Method of determining molar masses of polymers:			
	Viscosity method using Ostwald Viscometer.			
	(Derivation expected)			
2.5	Light Emitting Polymers:			
	Introduction, Characteristics, Method of preparation and applications.			
2.6	Antioxidants and Stabilizers:			
	Antioxidants, Ultraviolet stabilizers, Colourants, Antistatic agents and Curing			
	agents.			
III 3.1	BASICS OF QUANTUM CHEMISTRY	(9L)		
3.1.1	Classical mechanics:			
	Introduction, limitations of classical mechanics, Black body radiation,			
	photoelectric effect, Compton effect.			
3.1.2	Quantum mechanics:			
	Introduction, Planck's theory of quantization, wave particle duality, de $-$			
	Broglie's equation, Heisenberg's uncertainty principle.			
3.1.3	Interpretation and properties of the wave function on the basis of			
	postulates of quantum mechanics:			
	State function and its significance, Concept of operators - definition, addition,			

	subtraction and multiplication of operators, commutative and non -			
	commutative operators, linear operator, Hamiltonian operator, Eigen function			
	and Eigen value.			
3.2	NANOMATERIALS	(6L)		
3.2.1	Terminology and history:			
	Optical properties of nanomaterials.			
	i. Semiconducting nanoparticle			
	ii. Metallic nanoparticles			
3.2.2	Characterization			
	i. Characterization methods			
	a) Scanning electron microscopy (SEM)			
	b) Transmission electron microscopy (TEM)			
	fabrication methods, Top-down, bottom-up fabrication			
	a) Co-precipitation method b) Sol-gel method c) Chemical reduction method d)			
	Electrochemical method.			
3.2.3	Applications of Nanomaterials			
IV 4.1	NMR- NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	(7L)		
4.1.1	Principle:			
	Nuclear spin, magnetic moment, nuclear 'g' factor, energy levels, Larmor			
	precession, Relaxation processes inNMR (spin -spin relaxation and spin -			
	lattice relaxation).			
4.1.2	Instrumentation: NMR Spectrometer.			
4.2	PHASE RULE	(8L)		
4.2.1	Gibb's phase rule and terms involved in the equation.			
4.2.2	Application of phase rule to TWO component systems, condensed systems,			
	condensed phase rule, eutectic systems (Lead-Silver system), desilverisation			
	of lead.			
4.2.3	Introduction to THREE component systems, explanation of the phase diagram			
	for three liquids forming one immiscible pair.			

Note: Numericals and word problems are expected from all units of semester VI.

References

- Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co. Ltd.
- **Physical Chemistry**, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkata.
- Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]
- Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- **Physical Chemistry**, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.
- **Physical Chemistry**, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt. Ltd. New Delhi.
- **Principles of Physical Chemistry** B.R. Puri, L.R. Sharma, M.S. Pathania, VISHAL PUBLISHING Company, 2008.
- Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons Ple. Ltd., Singapore, 2007.
- **Polymer Science**, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011.
- Chemical Kinetics, K. Laidler, Pearson Education India, 1987.
- **Fundamentals of nanoparticles** Ahmed Barhoum, Abdel Salam, Hamdy Makhlouf, Micro and nanotechnologies series, 2018.
- Nanotechnology Fundamentals and Applications Manasi Karkare, 2020.
- Nanotechnology: Principles and Practices Sulbha Kulkarni

P-I Physical (SEM-VI)-Practical's

COs	After completing the course, Student will able to:	Bloom	Taxonomy
		Level (B	ΓL)

CO1	Determine molecular weight by Rast method and order of reaction	II		
	by fractional change method and Explain the adsorption			
	phenomenon and the validity of adsorption isotherm.			
CO2	Demonstrate practical skills based on instruments such as	III		
	conductometry, pH meter, potentiometry.			

Sr. No.	ТҮРЕ	PRINCIPLE	TITLE	
1	Non-	Viscosity	To determine the molecular weight of high polymer	
	Instruments		polyvinyl alcohol (PVA) by viscosity measurement.	
2		Chemical	To interpret the order of reaction graphically (Graph	
		Kinetics	should be plot traditional way or using origin	
			software) from the given experimental data and	
			calculate the specific rate constant. (No fractional	
			order)	
3	3 Instruments Potentiometry		I. To determine the amount of iodide, bromide	
			and chloride in the mixture by potentiometric	
			titration with silver nitrate.	
			II. To determine the number of electrons in the	
			redox reaction between ferrous ammonium	
			sulphate and ceric sulphate potentiometrically.	
4		Conductometry	To titrate a mixture of weak acid and strong acid	
			against strong base and estimate the amount of each	
			acid in the mixture conductometrically.	
5		Colorimetrv	To estimate the amount of Fe (III) in the complex	
			formation with salicylic acid by Static Method.	

Reference books

- Practical Physical Chemistry 3rd edition A.M. James and F.E. Prichard, Longman publication
- Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill
- Advanced Practical Physical Chemistry J.B. Yadav, Goel Publishing House

- Advanced Experimental Chemistry Vol-I J.N. Gurtu and R Kapoor, S. Chand and Co.
- **Experimental Physical Chemistry** by V.D. Athawale.
- Senior Practical Physical Chemistry by B.D. Khosla, V.C. Garg and A. Gulati, R Chand and Co.
Inorganic Chemistry

Course Description		
Semester	VI	
Course Name	Inorganic Chemistry	
Course Code	USC6CH2	
Eligibility for the Course	S.Y.B.Sc.	
Credit	2.5	
Hours	48 h (60L)	

Course Objectives:

- 1. To understand the bond formation in coordination compounds with special reference to CFT and MOT.
- 2. To study Stability and reactivity of complexes and Electronic Spectra of complexes.
- 3. To impart knowledge on organometallic compounds of main group elements
- 4. To provide a basic understanding of organometallic reactions including oxidative addition, reductive elimination, insertion, elimination, reactions.
- 5. To provide a foundation for understanding important catalytic processes commonly utilized in both academic and industrial laboratories.
- 6. To learn and emphasize the physicochemical principles involved in extraction of cast iron.
- 7. The learner is made familiar with industrially relevant topics such as Nanomaterials their types, properties and applications.
- 8. Role of metal ions in biological systems.

Course Outcomes:

COs.	After completing the course, students will be able to:	Bloom
		Taxonomy Level (BTL)
CO 1	Demonstrate the knowledge of organometallic chemistry, and	Understand

	metallurgy.	
CO 2	Explain importance of nanomaterials,Chemical methods of synthesis of nanomaterials and forms of nanomaterials	Understand
CO 3	Construct molecular orbital diagram of different coordination compounds, Analyse the electronic spectra of complexes.	Apply
CO 4	Measure Crystal field stabilization energy (CFSE) for octahedralcomplexes using basic concepts of Crystal Field Theory.	Evaluate

Unit		Topics	
Ι	1.0	THEORIES OF THE METAL-LIGAND BOND (I)	(15L)
	1.1	Limitations of Valence Bond Theory.	
	1.2	Crystal Field Theory and effect of crystal field on central metal valence orbitals in various geometries from linear to octahedral (from coordination number 2 to coordination number 6)	
	1.3	Splitting of d orbitals in octahedral, square planar and tetrahedral crystal fields.	
	1.4	Distortions from the octahedral geometry: (i) effect of ligand field and (ii) Jahn-Teller distortions.	
	1.5	Crystal field splitting parameter Δ ; its calculation and factors affecting it in octahedral complexes, Spectrochemical series.	
	1.6	Crystal field stabilization energy (CFSE), calculation of CFSE for octahedral complexes with d0 to d10 metal ion configurations.	
	1.7	Consequences of crystal field splitting on various properties such as ionic radii, hydration energy and enthalpies of formation of metal complexes of the first transition series.	
	1.8	Limitations of CFT: Evidences for covalence in metal complexes (i) intensities of d-d transitions, (ii) ESR spectrum of [IrCl6]2- (iii) Nephelauxetic effect.	

	2.0	THEORIES OF THE METAL-LIGAND BOND (II)	
II	2.1	MOLECULAR ORBITAL THEORY FOR COORDINATION	(4L)
		COMPOUNDS.	
	2.1.1	Introduction, Application of MOT to octahedral complexes involving	
		σ-bonding.	
	2.1.2	2.1.2 Examples like [FeF6] ⁴ -, [Fe(CN)6] ⁴⁻ , [FeF6] ³⁻ , [Fe(CN)6] ³⁻ ,	
		[CoF6] ³⁻ , [Co(NH3)6] ³⁺	
	2.1.3	Effect of π -bonding on complexes.	
		STABILITY OF METAL-COMPLEXES	(4L)
	2.2.1	Thermodynamic and kinetic perspectives of metal complexes with examples.	
-	2.2.2	Stability constants: stepwise and overall stability constants and their	
		Interrelationship.	
	2.2.1	Factors affecting thermodynamic stability.	
		REACTIVITY OF METAL COMPLEXES.	(4L)
	2.3.1	Introduction, Types of reactions in metal complexes.	
-	2.3.2	Ligand substitution reactions: Associative and Dissociative mechanisms.	
-	2.3.3	Inert and labile complexes: correlation between electronic	
		configurations and lability of complexes.	
	2.3.4	Acid hydrolysis, base hydrolysis and anation reactions.	
	2.4	ELECTRONIC SPECTRA.	(3L)
	2.4.1	Origin of electronic spectra	
	2.4.2	Types of electronic transitions in coordination compounds: intra- ligand,	
		Charge transfer and intra-metal transitions.	
	2.4.3	Selection rules for electronic transitions.	
	2.4.4	Electronic configuration and electronic micro states, Terms and Term symbols for	•
		transition metal ions, rules for determination of ground state term.	
	2.4.5	Determination of Terms for d1 electronic configuration.	
III	3.0	ORGANOMETALLIC CHEMISTRY	

	3.1	ORGANOMETALLIC COMPOUNDS OF MAIN GROUP METAL	(6L)
	3.1.1	General characteristics of various types of organometallic compounds,	
		viz. ionic, \Box -bonded and electron deficient compounds.	
	3.1.2	General synthetic methods of organometallic compounds:	
		(i) Oxidative-addition (ii)Metal-metal exchange (transmetallation)	
		banion-halide exchange (iv) Metal-hydrogen exchange (metallation) and (v)	
		Methylene-insertion reactions.	
	3.1.3	Some chemical reactions of organometallic compounds:	
		(i) Reactions with oxygen and halogens, (ii) Alkylation and arylation	
		reactions (iii) Reactions with protic reagents, (iv) Redistribution reactions and (v)	
		Complex formation reactions.	
		METALLOCENE'S	(3L)
	3.2.1	Introduction, Ferrocene: Synthesis, properties, structure and bonding on	
		the basis of VBT.	
		METAL CLUSTERS	(2L)
	3.3.1	δ bonding, bonding in Rhenium and Molybdenum halide complexes.	
		CATALYSIS	(4L)
	3.4.1	Comparison between homogeneous and heterogeneous catalysis	
	3.4.2	Basic steps involved in homogeneous catalysis	
	3.4.3	Mechanism of Wilkinson's catalyst in hydrogenation of alkenes.	
IV	4.0	SOME SELECTED TOPICS	
	4.1	METALLURGY	(4L)
	4.1.1	Introduction, Metallurgy of Iron: Occurrence, Physicochemical Principles,	
		Extraction of cast iron.	
	4.2	Nanomaterials	(8L)
	4.2.1	Introduction and importance of nanomaterials.	
	4.2.2	Properties (Comparison between bulk and nanomaterials) i) optical properties, ii)	
		Electrical conductivity iii) Melting points, iv) Mechanical properties.	

4.2.3	Forms of nanomaterials: Nanofilms, Nonolayers, Nanotubes, Nanowires and	
	Nanoparticles.	
4.2.4	Chemical methods of preparation : i) Colloidal routes and ii) sol gel synthesis.	
4.3	Introduction to Bioinorganic Chemistry.	(3L)
4.3.1	Essential and non-essential elements in biological systems.	
4.3.2	Biological importance of metal ions such as Na+, K+, Fe+2/Fe+3 and Cu+2(Role	
	of Na+ and K+ w.r.t ion pump)	

REFERENCES

Unit-I:

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan, V. Ramalingam Concise Coordination Chemistry, Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry, Himalaya Publishing House
- Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: ThomsonBrooks/Cole

Unit-II:

- 1. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
- 2. Basolo, F, and Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 3. Twigg, Mechanisms of Inorganic and Organometallic Reactions
- 4. Publisher: Springer
- 5. R.K. Sharma Inorganic Reaction Mechanisms Discovery Publishing House
- 6. M. L. Tobe Inorganic Reaction Mechanisms PublisherNelson, 1972

Unit-III:

- 1 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2 H.W. Porterfield, Inorganic Chemistry, Second Edition, Academic Press, 2005
- 3 Purecell, K.F. and Kotz, J.C., Inorganic Chemistry W.B. Saunders Co. 1977.
- 4 Robert H. Crabtree, The Organometallic Chemistry of the Transition Metals, Publication by JohnWiley & Sons
- 5 B D Gupta & Anil J Elias Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University press

6 Ram Charan Mehrotra, Organometallic Chemistry: A Unified Approach, New Age International.

Unit-IV

- 1 R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 2 D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 3 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 4 Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East westPress Pvt. Ltd., New Delhi.
- 5 R.Gopalan, Chemistry for undergraduates. Chapter 18. Principles of Metallurgy. (567-591)
- 6 Puri, Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy. (328-339)
- 7 Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 8 Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 9 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company1994.
- 10 Satya Prakash, G.D. Tuli, R.D. Madan, Advanced Inorganic Chemistry.S. Chand & Co Ltd
- 11 Sulabha K. Kulkarni, Nanotechnology-Principles and Practices, Capital Publishing Co.,2007.
- 12 Claudia-Altavilla, Enrico-Ciliberto, Inorganic Nanoparticles: Synthesis, Application and Perspectives, 2010.
- 13 Geoffrey-A.-Ozin, Andre-C.-Arsenault, Nanochemistry A Chemical Approach to Nanomaterials, 2005.

Course Description		
Semester	VI	
Course Name	Inorganic Chemistry Practicals	
Course Code	USC6CP2	
Eligibility for the Course	S.Y.B.Sc.	
Credit	1. 50 for (Inorganic Chemistry)	
Hours	Lectures: 30	

Course Outcomes:

COs. No.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO 1	Develop the practical skills for preparation of different inorganic metalcomplexes	Understand
CO 2	Examine the percentage purity of the inorganic compounds qualitatively and quantitively and impurity identification.	Analyse

COURSE CODE: USC6CP1 CREDITS: 1.50 for USC6CH2 (Inorganic Chemistry)

I- Inorganic Preparations:

- 1. Preparation of Manganese (III) acetylacetonate, [Mn(acac)₃]
- 2. Green synthesis of bis(dimethylglyoximato) nickel (II) complexusing nickel carbonate and sodium salt of dmg.
- 3. Preparation of potassium trioxalato aluminate (III)

II- Percentage Purity:

Determination of percentage purity of the given water-soluble salt and qualitative detection

w.r.t

added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of main group metal ions)

References

- 1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N. Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semi micro qualitative inorganic analysis. Fifth edition.

Organic Chemistry

Course Description		
Semester	VI	
Course Name	Organic Chemistry	
Course Code	USC6CH3	
Eligibility for the Course	S.Y.B.Sc.	
Credit	2.5	
Hours	48 h (60L)	

Course Objectives

- To bring organic chemistry to students in the most thought-provoking and comprehensible way possible.
- Develop analytical thinking and apply the same for understanding principles, proposing mechanism and logical conclusions.
- Understanding of the interdisciplinary nature of organic chemistry and emerging trends in organic chemistry.
- To provide an overview and familiarize the students with the basic principles of organic reactions and its stereochemistry.
- Comprehensive and accessible overview of spectroscopy to build the necessary competency among the students for interpretation of spectral data in structure determination of organic compounds.
- To know the structure, elucidation and reactivity of the number of natural products and synthetic polymers.
- Competency in design and planning of synthesis and carry out with Good Laboratory Practices.
- Competency in handling instruments and techniques of separation of mixtures of organic compounds.

Course Outcomes

COs	After completing the course, Student will able to:	Bloom
		Taxonomy
		Level (BTL)
CO1	Explain stereoselectivity, stereospecificity, mechanism and	II
	stereochemistry of substitution, elimination and addition and	
	rearrangement reactions.	
CO2	Predict the synthons and functional group transformation and	VI
	classify the selectivity of reagents and catalyst in organic	
	synthesis.	
CO3	Explain the structures of proteins, nucleic acids and its	II
	components.	
CO4	Interpret the analytical and chemical evidences for structure	V
	elucidation of natural products.	

Module	Topics	(15L)
I		
1.1	MOLECULAR REARRANGEMENTS	(5L)
	Mechanism of the following rearrangements with examples and	
	stereochemistry wherever applicable.	
1.1.1.	Migration to the electron deficient carbon: Pinacol-pinacolone	
	rearrangement, Benzilic acid rearrangement	
1.1.2	Migration to the electron deficient nitrogen: Beckmann rearrangement.	
1.1.3	Migration involving a carbanion: Favorski rearrangement.	
1.1.4	Migration to electron deficient oxygen: Baeyer-Villiger rearrangement	
1.2	CHEMISTRY OF ENOLATES	(7L)
1.2.1	Introduction: generation of enolates, kinetically controlled and	
	thermodynamically controlled enolates	
1.2.2	Mechanism and applications of the following reactions:	
	a. Aldol reaction	
	b. Claisen-Schmidt reaction	
	c. Dieckmann Reaction	

	d. Michael reaction	
	e. Wittig reaction	
1.3	RETROSYNTHESIS	(3 L)
1.3.1	Introduction to Retrosynthetic analysis and synthetic planning, Target molecule	
	(TM), synthons, synthetic equivalents, disconnection approach, functional group	
	interconversions (FGI)	
1.3.2	Concept of umpolung (Reversal of polarity)	
II		(15L)
2.1	STEREOCHEMISTRY-II	(10L)
2.1.1	Stereoselectivity and stereospecificity: Idea of enantioselectivity (ee) and	
	diastereoselectivity (de)	
2.1.2	Stereochemistry of- i) Substitution reactions: SNi (reaction of alcohol with thionyl	
	chloride) ii) Elimination reactions: E2-Base induced dehydrohalogenation of	
	1-bromo-1, 2- diphenylpropane. Iii) Addition reactions to olefins: a) bromination	
	(electrophilic anti addition) b) syn-hydroxylation with OsO4 and KmnO4	
	c) epoxidation followed by hydrolysis.	
2.2	AMINO ACIDS & PROTEINS	(5L)
2.2.1	α -Amino acids: General Structure, configuration, and classification based on	
	structure and nutrition. Properties: pH dependency of ionic structure, isoelectric point	
	and zwitter ion. Methods of preparations: Strecker synthesis, Gabriel phthalamide	
	synthesis.	
2.2.2	Polypeptides and Proteins: Nature of peptide bond. Nomenclature and representation	
	of polypeptides (di-and tri-peptides) with examples Merrifield solid phase	
	polypeptide synthesis. Proteins: general idea of primary, secondary, tertiary &	
	quaternary structure	

III		(15L)
3.1	SYNTHESIS OF ORGANIC COMPOUNDS	(8L)
3.1.1	Introduction: Linear and convergent synthesis, criteria for an ideal synthesis, concept	
	of chemoselectivity and regioselectivity with examples, calculation of yields.	
3.1.2	Multicomponent Synthesis: Mannich reaction and Biginelli reaction. Synthesis with	
	examples (no mechanism)	
3.1.3	Green chemistry:	
	Introduction: Twelve principles of green chemistry, concept of atom economy	
	and E-factor, calculations and their significance, numerical examples.	
	i) Green reagents: dimethyl carbonate	
	ii) Green starting materials: D-glucose	
	iii) Green solvents : supercritical CO ₂	
	iv) Green catalysts: Bio catalysts	
3.2	CATALYST AND REAGENTS	(7L)
	Study of the following catalysts and reagents with respect to functional group	
	transformations and selectivity (no mechanism)	
3.2.1	Catalysts:	
	Catalysts for hydrogenation:	
	a. Raney Nickel	
	b. Pt and PtO ₂ (C=C, CN, NO ₂ , aromatic ring)	
	c. $Pd/C : C=C, COCl \rightarrow CHO$ (Rosenmund)	
	d. Lindlar catalyst: alkyne	
3.2.2	Reagents:	
	a. LiAlH ₄ (reduction of CO, COOR, CN, NO ₂)	
	b. NaBH ₄ (reduction of CO)	
	c. SeO ₂ (Oxidation of CH ₂ alpha to CO)	
	d. m-CPBA (epoxidation of C=C)	
	e. NBS (allylic and benzylic bromination)	
IV		(15L)
4.1	NATURAL PRODUCTS	(10L)
4.1.1	Terpenoids: Occurrence, Classification, Isoprene rule, special isoprene rule	. /

4.1.2	Citral:	
	a. Structural determination of citral.	
	b. Synthesis of citral from methyl heptenone	
	c. Isomerism in citral. (cis and trans form).	
4.1.3	Alkaloids: Introduction and occurrence. Hofmann's exhaustive methylation and	
	degradation in: simple open chain and N-substituted monocyclic amines.	
4.1.4	Nicotine:	
	a. Structural determination of nicotine. (Pinner's work included)	
	b. Synthesis of nicotine from nicotinic acid	
	c. Medicinal Importance and harmful effects of nicotine	
4.1.5	Hormones: Introduction, structure of adrenaline (epinephrine), physiological	
	action of adrenaline. Synthesis of adrenaline from	
	a. Catechol	
	b. p-hydroxybenzaldehyde (Ott's synthesis)	
4.2	NUCLEIC ACIDS	(5L)
	Controlled hydrolysis of nucleic acids. Sugars and bases in nucleic acids.	
	Structures of nucleosides and nucleotides in DNA and RNA. Structures of	
	nucleic acids (DNA and RNA) including base pairing.	

REFERENCES:

- 1. Advanced Organic Chemistry by J. March, 6th Edition.
- 2. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 3. Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A. Carey and Richard J. Sundberg, Springer.
- Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001)
- 5. Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.
- 6. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 7. Organic Chemistry, W. G. Solomons, C. B. Fryhle, 8th Edition, Wiley India Pvt. Ltd.
- 8. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004.

- Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 10. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edition
- 11. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd.
- Biochemistry, 8th Ed., Jeremy Berg, Lubert Stryer, John L. Tymoczko, Gregory J. Gatto Pub. W. H. Freeman Publishers.
- Lehninger Principles of Biochemistry 7th Ed., David Nelson and Michael Cox, Publisher W. H. Freeman.
- 14. Name Reactions Jie Jack Li, 4th Edition, Springer Pub.
- 15. Organic Chemistry volume-I & II I L Finar.
- 16. Introduction to Organic chemistry, John McMurry
- 17. S.H. Pine, Organic Chemistry 4th edition. McGraw Hill
- 18. Organic chemistry by Francis Carey McGrawHill
- 19. Green chemistry: V. K. Ahluwalia (Narosa publishing house Pvt. Ltd.)
- 20. New trends in green chemistry V. K. Ahluwalia, M. Kidwai, Klumer Academic publisher.
- 21. Green chemistry by V. Kumar.
- 22. Natural Products Volume I and Volume II by O.P. Agarwal
- 23. Chemistry of Natural Products, Sujata V. Bhat, B.A. Nagasampagi, Meenakshi Sivakumar.

P-III Organic (SEM-VI)-Practical's

Course code: USC6CP2

COs	After completing the course, Student will able to:	Bloom Taxonomy	
		Level (BTL)	
CO1	Demonstrate the separation of the liquid-liquid and solid-liquid	II	
	mixtures by fractional distillation.		
CO2	Plan organic synthesis with calculations, stoichiometry, aspects of	III	
	synthesis and predictions of spectral data in IR and NMR of the		
	reactant and product.		

Separation of Binary liquid-liquid and liquid- solid mixture of organic compounds using micro-scale technique.

1. Minimum six mixtures to be completed by the students.

- Components of the liquid-liquid mixture should include volatile liquids like acetone, methyl acetate, ethyl acetate, isopropyl alcohol, ethyl alcohol, EMK and non-volatile liquids like chlorobenzene, bromobenzene, aniline, N,N dimethyl aniline, acetophenone, nitrobenzene, ethyl benzoate.
- 3. Components of the liquid-solid mixture should include volatile liquids like acetone, methyl acetate, ethyl acetate, ethyl alcohol, IPA, EMK and solids such as water insoluble acids, phenols, bases, neutral.
- 4. A sample of one ml mixture to be given to the student for detection of the physical type of the mixture.
- 5. After correct determination of physical type, separation of the binary mixture to be carried out by distillation method using micro-scale technique.
- 6. After separation into component A and component B, yield and physical constant are to be determined.

Planning of Organic Synthesis: To be recorded in to the journal (minimum four preparations) Students are expected to know (i) the planning of synthesis, Literature, effect of reaction parameters including stoichiometry **and** green chemistry aspects ii) the possible mechanism, expected spectral data (IR and NMR) of the starting material and final product.

- 1. Cyclohexanone to oxime
- 2. Nitrobenezene to m-diniteobenzene
- 3. m-dinitrobenzene to m-nitroaniline
- 4. Acetanilide to p-bromoacetanilide
- 5. p-nitroacetanilide to p-nitroaniline
- 6. Acetanilide to p-nitroacetanilide

References for Practicals:

- 1. Practical organic chemistry A. I. Vogel
- 2. Practical organic chemistry H. Middleton
- 3. Practical organic chemistry O.P. Agarwal
- 4. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.

١

Important Note:

1. The candidate is expected to submit a journal certified by the Head of the Department /institution at the time of the practical examination.

- 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

Analytical Chemistry

Course Description		
Semester	VI	
Course Name	Analytical Chemistry	
Course Code	USC6CH4	
Eligibility for the Course	S.Y.B.Sc.	
Credit	2.5	
Hours	48 h (60L)	

Course Objectives

- To provide broad understanding of various advanced instrumental techniques
- To understand the role of instrumental methods in specific applications
- To familiarise the students with processes in food and cosmetics industry

Course Outcomes

After completion of this course students will be able to

- CO1: Explain the fundamentals and working of electroanalytical techniques such as polarography and amperometry.
- CO2: Discuss the basics of chromatography, contrast and describe underlying principle, instrumentation and working of advanced separation methods such as GC, HPLC and HPTLC
- CO3: Explain principles of thermal and radioanalytical methods and study of thermal decomposition of materials.
- CO4: Apply analytical techniques for the analysis of cosmetics and food and describe food preservation and processing techniques.

Module/ Course Description		Lecture	
Uni	t		S
1.		Electroanalytical Techniques	15L
1.1		Polarography (Numerical and word problems are expected)	11L
	1.1.1	Difference between potentiometry and voltammetry, Polarizable and	
	1 1 0	non-polarizable electrodes	
	1.1.2	Basic principle of polarography	
		Polarographic cells, DME (construction, working, advantages and limitations)	
	1.1.3	3 DC polarogram: Terms involved - Residual current Diffusion	
		current I imiting current Half Wave Potential	
		Role and selection of supporting electrolyte. Interference of oxygen	
		and its removal polarographic Maxima and Maxima Suppressors	
		Qualitative aspects of Polarography: Half wave potential $F1/2$ Factors	
		$E_{1/2}$, ractors	
		Quantitative aspects of polarography: Ilkovic equations: various	
	111	terms involved in it (No derivation)	
	1.1.4	Quantification	
		1) Wave height – Concentration plots (working	
		plots/calibration)	
		2) Internal standard (pilot ion) method	
		Standard addition method	
	1.1.5	Applications advantages and limitations	
1.2		Amperometric Titration	04L
	1.2.1	Principle, Rotating Platinum Electrode (Construction, advantagesand	
		limitations)	
	1.2.2	Titration curves with example	
	1.2.3	Advantages and limitations	
2.		Methods of Separation – II	15L
2.1		Gas Chromatography (Numerical and word problems are expected)	07L
	2.1.1	Introduction, Principle, Theory and terms involved	
	2.1.2	Instrumentation: Block diagram and components, types of columns,	
		stationary phases in GSC and GLC, Detectors: TCD, FID, ECD	
	2.1.3	Qualitative, Quantitative analysis and applications	

	2.1.4	Comparison between GSC and GLC	
2.2		High Performance Liquid chromatography (HPLC)	04L
	2.2.1	Introduction and Principle	
		Instrumentation- components with their significance: Solvent Reservoir,	
		Degassing system, Pumps-(reciprocating pumps, screw driven- syringe	
		type pumps, pneumatic pumps, advantages and disadvantages of each	
		pump), Precolumn, Sample injection system, HPLC Columns, Detectors	
		(UV – Visible detector, Refractive index detector)	
	2.2.2	2 Qualitative and Quantitative Applications of HPLC	
2.3		High Performance Thin Layer chromatography (HPTLC)	03L
	2.3.1	Introduction and Principle Stationary phase, Sample application and	
		mobile phase	
	2.3.2	Detectors- a) Scanning densitometer- Components. Types of	
		densitometers- Single beam and Double beam, b) Fluorometric Detector	
	2.3.3	2.3.3 Advantages, disadvantages and applications	
	2.3.4 Comparison of TLC and HPTLC		
2			1 /7 T
з.		Ion Exchange Chromatography & Miscellaneous	15L
3.		Methods of Analysis	15L
3.1 3.1		IonExchangeChromatography&MiscellaneousMethods of AnalysisIon Exchange ChromatographyIon Exchange Chromatography	15L 05L
3.1	3.1.1	IonExchangeChromatography&MiscellaneousMethods of AnalysisIntroduction, Principle.Introduction, Principle.	05L
3.1	3.1.1 3.1.2	IonExchangeChromatography&MiscellaneousMethods of Analysis	05L
3.1	3.1.1 3.1.2 3.1.3	IonExchangeChromatography&MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and	05L
3.1	3.1.1 3.1.2 3.1.3	IonExchangeChromatography&MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factor	05L
3.1	3.1.1 3.1.2 3.1.3 3.1.4	IonExchangeChromatography&MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ions	05L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anion	05L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal Methods	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methods	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1 3.2.2	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methodsThermogravimetric Analysis (TGA):	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1 3.2.2	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methodsThermogravimetric Analysis (TGA):Principle, Instrumentation, TG curve CaC2O4 .H2O and CuSO4.5H2O,	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1 3.2.2	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methodsThermogravimetric Analysis (TGA):Principle, Instrumentation, TG curve CaC2O4 .H2O and CuSO4.5H2O, Applications	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1 3.2.2 3.2.3	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methodsThermogravimetric Analysis (TGA):Principle, Instrumentation, TG curve CaC2O4 .H2O and CuSO4.5H2O, ApplicationsDifferential Thermal Analysis (DTA):	05L 07L
3.1	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2.1 3.2.2 3.2.3	IonExchangeChromatography& MiscellaneousMethods of AnalysisIon Exchange ChromatographyIntroduction, Principle.Types of Ion Exchangers, Ideal properties of resinIon Exchange equilibria and mechanism, selectivity coefficient and separation factorFactors affecting separation of ionsIon exchange capacity and its determination for cation and anionThermal MethodsIntroduction to various thermal methodsThermogravimetric Analysis (TGA):Principle, Instrumentation, TG curve CaC2O4 .H2O and CuSO4.5H2O, ApplicationsDifferential Thermal Analysis (DTA):Principle, Instrumentation, and Reference material used, Differential	05L 07L

	Comparison between TGA and DTA.		
3.3		Radio-analytical Methods	03L
	3.3.1	Introduction to Radio analytical Methods, Classification	
	3.3.2	Introduction to Neutron Activation Analysis, Theory, Advantages,	
		Disadvantages, Applications	
4.	Food and Cosmetics Analysis		15L
4.1	Introduction to Food Analysis		10L
	4.1.1	Food legislation: Sampling of food; General methods of analysis -	
		moisture, ash, titrable acidity, pH and Sodium chloride	
	4.1.2	1.2 Analysis of food and food products	
	1) Milk: Composition		
		Analysis of milk for lactose by Lane Eynon's Method	
		2) Honey: Composition,	
		Analysis of reducing sugars in honey by Coles Ferricyanide method	
		Tea: Composition,	
	Analysis of Tannin by Lowenthal's method		
		3) Coffee:	
	Constituents and composition, Role of Chicory Analysis of caffeine by		
	Bailey Andrew method		
	4.1.3 Food Preservatives: need of food preservatives; different types of food		
	preservatives and their role as preservatives. Determination of boric acid		
		and sodium benzoate from food products	
	4.1.4	Food Adulteration: Detection of common adulterants in milk, honey, tea	
		and coffee	
4.2		Introduction to Cosmetics Analysis	05L
	4.2.1	Introduction and sensory properties	
	4.2.2	Study of cosmetic products –	
		1) Face powder: Composition	
		Estimation of calcium and magnesium by complexometric titration	
		2) Lipstick: Constituents	
		Ash analysis for water soluble salts: borates, carbonates and zinc oxide	
		3) Deodorants and Antiperspirants: Constituents, properties	
		Estimation of zinc by gravimetry	

References

1.	An Advance Dairy chemistry, V 3, P. F. Fox, P. L. H.McSweeney Springer
2.	Analysis of food and Beverages, George Charalanbous, Academic press 1978
3.	Analytical Chemistry of Open Learning(ACOL), James W. Dodd & Kenneth H. Tonge
4.	Analytical chemistry David Harvey The, McGraw Hill Companies, Inc.
5.	Analytical Chemistry, Gary D. Christan, 5th edition
6.	Analytical chemistry, R. K. Dave.
7.	Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
8.	Modern Analytical Chemistry, David Harvey, McGraw-Hill, 2000
9.	Food Analysis, Edited by S. Suzanne Nielsen, Springer
10.	Food Analysis: Theory and practice, YeshajahuPomeranz,Clifton E. Meloan, Springer
11.	Formulation and Function of cosmetics, Sa Jellineck
12.	Fundamentals of Analytical Chemistry, D. A. Skoog and D. M.West and F. J. Holler Holt.,
	Saunders 6th Edition (1992)
13.	Government of India publications of food drug cosmetic act andrules.
14.	Harry's Cosmetology, Longman scientific co.
15.	High Performance Thin Layer Chromatography in Foodanalysis, by Prem kumar, CBS
	Publisher and distributer
16.	Instrumental methods Of Analysis, by Willard Merritt Dean,7thEdition, CBS Publisher
	and distribution Pvt Ltd
17.	Introduction to Polarography and Allied Techniques, By Kamala Zutshi, New Age
	International, 2006.
18.	Modern cosmetics, E. Thomessen Wiley Inter science
19.	Principles of Instrumental Analysis, 5th Edition, By Skoog, Holler, Nieman
20.	Principles of Polarography by Jaroslav Heyrovský, Jaroslav Kůta, 1st Edition, Academic
	Press, eBook ISBN: 978148326478
21.	Solvent extraction and ion exchange, J Marcus and A. S. KertesWiley INC 1969
22.	High Performance Thin Layer Chromatography by Dr P.D. Sethi, CBS Publisher and
	Distribution

23.	High Performance Thin Layer Chromatography in Foodanalysis, by Prem kumar, CBS
	Publisher and distributer
24	Analytical Chromatography, Gurdeep R Chatwal, Himalaya publication
25	A textbook of Gas chromatography by Rajbir Singh, Mittal Publication
26	Basic Gas Chromatography, Harold M. Mcnair James M. Miller, Wiley (e-book)

Course Description		
Semester	VI	
Course Name	Practical (Analytical Chemistry)	
Course Code	USC6CP2	
Eligibility for the Course	S.Y.B.Sc.	
Credit	1.5	
Hours	24L	

Course Objectives

- To understand the chemist's broad role in the problem-solving of analytical tasks
- To handle the instruments correctly and learn calibration, interpretation and representation of measurements.

Course Outcomes:

After completion of this course students will be able to

- CO1: Demonstrate the analytical skills required for detection, identification, separation and analysis of food samples, environmental samples, pharmaceuticals etc.
- CO2: Conduct, analyze and interpret results of a chemical analysis and communicate effectively in written reports and other formats

Title of Experiments

- 1 Estimation of Chromium in water sample spectrophotometrically by using Diphenyl carbazide.
- 2 Estimation of reducing sugar in honey by Willstatter method.
- 3 Separation of Mg (II) and Zn(II) by using anion exchange resin and their estimation by complexometric titration.
- 4 Determination of % purity of Hydrogen peroxide potentiometrically
- 5 Determination of phosphoric acid in cola sample pH metrically.
- 6 Detection of adulterants in milk, (Sugar, Starch, Soap, Formalin, Ammonium sulphate).

Note: Calculation of percent error is expected for all the experiments.

References

- Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J Memdham and R C Denney, ELBS with Longmann (1989).
- 2. Vogel's Textbook of Quantitative Chemical analysis, Sixth edition, J.Mendham et.al
- 3. The chemical analysis of food and food products III edition Morris Jacob
- 4. The chemical analysis of food by David Pearson and Henry Edward

Drugs and Dyes

Course Description		
Semester	VI	
Course Name	Drugs and Dyes	
Course Code	USC6CH2	
Eligibility for the Course	S.Y.B.Sc.	
Credit	2.5	
Hours	48 h (60L)	

Unit	Course Description		
1.			
	1.1 Drug Discovery, Design and Development	15	
	Discovery of a Lead compound: Screening, drug metabolism studies		
	and clinical observation, Lipinski's rule of 5		
	Medicinal properties of compounds from Natural Sources: Anti-		
	infective and anticancer properties of Turmeric (Curcumin)		
	Development of drug: The Pharmacophore identification,		
	modification of structure or functional group, Structure activity		
	relationship (Sulphonamides and Benzodiazepines).		
	Structure modification to increase potency: Homologation, Chain		
	branching and Extension of the structure, Ring chain transformation,		
	Bioisoterism. Computer assisted drug design.		
	1.2 Drug Metabolism: Introduction, Absorption, Distribution, Bio-		
	transformation, Excretion Different types of chemical transformation of		
	drugs with specific examples.		
	1.3 Chemotherapeutic Agents: Study of the following		
	chemotherapeutic agents with respect to their chemical structure,		
	chemical class, the rapeutic uses, side effects and introduction to MDR		
	wherever applicable.		
	Antibiotics and antivirals: Definition,		
	 Amoxicillin (□- lactum antibiotics) 		
	 Cefpodoxime (Cephalosporins) 		
	 Doxycycline (Tetracyclines) 		

	 Levofloxacin (Quinolones) (Synthesis from 2,3,4 – Trifluro - 	
	1-nitrobenzene)	l
	Aciclovir/Acyclovir (Purines)	1
		1
	Antimalarials: Types of malaria; Symptoms; Pathological detection	1
	during window period (Life cycle of the parasites not to be discussed)	1
	Chloroquine (3-Amino quinolones)	1
	Artemether (Benzodioxepins)	1
	• Synthesis of Chloroquine	1
	Following combination to be discussed: Atremether-Lumefantrine (no	1
	structure)	1
		1
	Anthelmintics and Antifungal agents	1
	Drugs effective in the treatment of Nematodes and	1
	Cestodesinfestations.	1
	• Diethyl carbamazine (Piperazines)	1
	• Albendazole (Benzimidazoles) (Synthesis from	1
	2-Nitroaniline)	1
	Clotrimazole (Imidazole)	1
	Fluconazole (Triazole) (Synthesis from 1- Bromo – 2,3,4-trifluoro	1
	benzene)	1
2.		
	Chemotherapeutic Agents continued.	15
	2.1 Antiamoebic Drugs	1
	Types of Amoebiasis	l
	Metronidazole, Ornidazole, Tinidazole (Imidazole)	1
	Synthesis of Metronidazole from glyoxal by	l
	Debus-Radziszewski imidazole synthesis route	l
		1
	Following combination therapy to be discussed: Ciprofloxacin-	l
	Tinidazole	l
		l
	2.2 Antitubercular and Antileprotic Drugs	l

Types of Tuberculosis; Symptoms and diagnosis of	
Tuberculosis.Types of Leprosy.	
General idea of Antibiotics used in their treatment.	
• PAS (Amino salicylates)	
• Isoniazide (Hydrazides)	
Pyrazinamide (Pyrazines)	
• (+) Ethambutol (Aliphatic	
diamines) (Synthesis from 1-	
Nitropropane)	
Dapsone(Sulphonamides)	
(Synthesis from 4- Chloronitrobenzene)	
Clofazimine (Phenazines)	
Bedaquiline (Quinoline)	
Following combination therapy to be discussed:	
(i) Rifampin + Ethambutol + Pyrazinamide	
(ii) Rifampin + Isoniazide + Pyrazinamide	
2.3 Anti-Neoplastic Drugs	
Idea of malignancy; Causes of cancer	
Brief idea of Immuno Stimulants &Immuno depressants	
Lomoustine (Nitrosoureas)	
• Anastrozole(Triazoles) (Synthesis from 3,5-bis	
(bromomethyl) toluene)	
Cisplatin (Chloro Platinum)	
Vincristine, Vinblastine, Vindesine)	
(Vinca alkaloids) (structure not	
expected	
2.4 Anti-HIV Drugs	
Idea of HIV pathogenicity, Symptoms of AIDS	
AZT/Zidovudine, Lamivudine, DDI (Purines)	
2.5 Drug Intermediates: Synthesis and uses	
1. p-Acetyl amino benzenesulphonyl chloride from Aniline	

	2. Epichlorohydrine from propene	
	Local Anti-infective Drugs:	
	(Introduction, Classification, Synthesis of Sulphonamides, Dapsone,	
	Aminosalicyclic acid)	
	2.6 Nano particles in Medicinal Chemistry	
	Introduction; Carbon nano particles (structures) and Carbon nano tubes:	
	• Functionalization for Pharmaceutical applications	
	• Targeted drug delivery	
	• In vaccine (Foot and mouth disease)	
	• Use in Bio-physical treatment.	
	Gold nano particles in treatment of: Cancer; Parkinsonism;	
	Alzheimer.	
	Silver nano particles: Antimicrobial activity.	
	2.7 Drugs and Environmental Aspects	
	• Impact of Pharma-industry on environment,	
	International regulation for human experimentation with reference to:	
	"The Nuremberg Code" and "The HelsinkiDeclaration".	
2	2.1 Classification of Duog based on Chamical Constitution and	(121)
3	S.1 Classification of Dyes based on Chemical Constitution and	(12L)
	expected)	
	i) Nitro Dye: Naphthol Yellow S	
	ii) Nitroso Dye: Gambine Y	
	iii)Azo dyes:	
	a) Monoazo dyes: Orange IV *(from sulphanilic acid) & Eriochrome	
	Black T* (from β - naphthol)	
	b) Bisazo dyes: Congo Red* (from nitrobenzene)	
	Trisazo Dye: Direct Deep Black EW* (from benzidine)	
	iv)Diphenylmethane dye: Auramine O* (from N,N-dimethyl aniline)	
	v)Triphenylmethane dye:	

	a) Diamine series: Malachite Green* (from benzaldehyde)	
	b) Triamine series: Acid Magenta	
	Phenol series: Rosolic acid	
	vi)Heterocyclic Dyes:	
	a) Thiazine dyes: Methylene Blue	
	b) Azine dyes: Safranin T* (from o-toluidine)	
	c) Xanthene Dyes: Eosin* (from phthalic anhydride)	
	d) Oxazine Dyes: Capri Blue	
	Acridine Dyes: Acriflavine	
	vii)Quinone Dyes:	
	a) Naphthaquinone: Naphthazarin	
	Anthraquinone Dyes: Indanthrene Blue* (from anthraquinone)	
	viii) Indigoid Dyes: Indigo* (from aniline + monochloroacetic acid)	
	ix) Phthalocyanine Dyes: Monastral Fast Blue B	
3.2	Health and Environmental Hazards of Synthetic Dyes and their	(3 L)
	Remediation Processes	
3.2.	Impact of the textile and leather dye Industry on the environment	
1	with special emphasis on water pollution	
3.2.	Health Hazards: Toxicity of dyes w.r.t food colours.	
$\frac{2}{32}$	Effluent Treatment Strategies	
3	Brief introduction to effluent treatment plants (FTP)	
	Primary Remediation processes (Physical Processes) Sedimentation	
	Aeration Sorption (activated charcoal fly ashetc.)	
	Secondary Remediation processes: Biological Remediation	
	-Biosorption, bioremediation and biodegradation	
	Chemical Remediation Oxidation Processes	
	(chlorination).Coagulation-flocculation-Precipitation	
4	4.1 Non-textile uses of dyes:	(8L)
4.1.	Biomedical uses of dyes	
1	i) Dyes used in formulations (Tablets, capsules, syrups etc)	
	Sunset vellow, Tartrazine. Ervthrosin	
1	,	1

	ii)	Biological staining agents	
		Methylene blue, Crystal violet and Safranine T	
	iii)	DNA markers	
		Bromophenol blue, Orange G, Cresol red	
	iv)	Dyes as therapeutics	
		Mercurochrome, Acriflavine, Crystal Violet, Neoprontosil	
4.1.	Dyes used in food and cosmetics:		
2	i)	Properties of dyes used in food and cosmetics	
	ii)	Introduction to FDA and FSSAI	
	Commonl	y used food colours and their limits	
4.1.	Paper ar	nd leather dyes	
3	i)	Structural features of paper and leather	
	Dyes appl	icable to paper and leather	
4.1.	Miscella	neous dyes	
4	i)	Hair dyes	
	ii)	Laser dyes	
	iii)	Indicators	
	iv)	Security inks	
	iv) Co	loured smokes and camouflage colours	
4.2	Pigment	S	(3L)
	Definitio	n of pigments, examples, properties of pigments, difference	
	between	dyes and pigments.	
	Definitio	n of Lakes and Toners	
4.3	Dyestuff	Industry - Indian Perspective	(4L)
4.3. 1	Growth a	and development of the Indian Dyestuff Industry	
3.3.	Strengths	s, Weaknesses, Opportunities and Challenges of theDyestuff	
2	industry	in India	
4.3. 3	Make in	India - Future Prospects of the Dye Industry	

References (For Units III & IV)

- 1. Chemistry of Synthetic Dyes, Vol I IV, Venkatraman K., Academic Press 1972
- 2. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments. Heinrich Zollinger, H. (2003), 3rd Edition, Wiley-VCH, Cambridge
- 3. The Chemistry of Synthetic Dyes and Pigments, Lubs H.A., Robert E Krieger PublishingCompany, NY ,1995
- 4. Chemistry of Dyes and Principles of Dyeing, Shenai V.A., Sevak Publications, 1973
- 5. Environmental Studies, Joseph Benny, Tata McGraw Hill Education, 2005
- Fundamental Concepts of Environmental Chemistry,Sodhi. G. S.,Alpha Science International, 2009
- 7. Planning Commission, Niti Aayog, FSSAI and FDA websites
- 8. Green Chemistry for Dyes Removal from Waste Water- Research Trends and Applications, Ed. Sharma S.K., Wiley, 2015
- 9. Environmental Pollution- Monitoring and Control, Khopkar S.M., New Age International (P)Ltd, New Delhi, 1982

Semester-VI Practical

COs. No.	After completing the course, students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Synthesize, Crystallization Physical constant, able to understand process of purification.	Apply
CO2	Determination of Calcium from given Calcium tablet	Create
CO3	Examine monograph	Evaluate
CO4	Apply the TLC technique for the separation of the mixture of dyes	Apply

Unit	Course Description	Hrs
1.	Practical's Semester-VI	
		30
	1.O-Methylation of β -naphthol.	
	2. Determination of Calcium from given Calcium tablet.	
	3. Preparation of Fluorescein	
	4. TLC of a mixture of dyes (safranine-T, Indigo carmine, methylene	
	blue)	
	II] Preparation of monograph of any one drug from syllabus by I.P.	
	method.	

References:

1. Foye's principles of medicinal chemistry. 6th Edition, Edited by Davis William & Thomas Lemke, Indian edition by B I Publication Pvt Ltd, Lippmcolt Williams & Wilkins.

2. Text book of organic medicinal & pharmaceutical chemistry. Wilson & Gisovolds, 11th Edition by John H Block, John M Beale Jr.

3. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.

4. Burger's Medicinal Chemistry, Drug Discovery & Development. Abraham & Rotella. Wiley

5. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.

6. Medicinal chemistry. V.K. Ahluwalia and Madhu Chopra, CRC Press.

7. Principle of medicinal chemistry. Vol 1 & 2 S. S. Kadam, K. R. Mahadik, K. G. Bothara

8. The Art of Drug synthesis. Johnson and Li. Wiley, 2007.

9. The organic chemistry of drug design & drug action. 2 nd ed. By Richard B Silvermann, Academic Press.

10. The Organic Chemistry of Drug Synthesis. Lednicer and Mitsher, Wliey. 11. Text book of drug design and discovery. Povl-Krog-Sgaard-Larsen, Tommy Liljefors and ULF Madsen, 3rd Edition Taylor & Francis.