UNIVERSITY OF MUMBAI No. UG/ C1 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/126 of 2011, dated 13th June, 2011 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the I/c Dean, Faculty of Science & Technology at its meeting held on 8th June, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 <u>vide</u> item No. 4.38 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.Y.B.Sc. in Bio-Technology (Sem - V & VI), has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 6th June, 2018 To July

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.38/14/06/2018

No. UG/ 6 | -A of 2018

MUMBAI-400 032

6th June, 2018 July

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Director, Board of Examinations and Evaluation,
- 3) The Director, Board of Students Development,
- 4) The Co-Ordinator, University Computerization Centre,

Illawle

(Dr. Dinesh Kamble) I/c REGISTRAR

UNIVERSITY OF MUMBAI

Revised Syllabus for T.Y.B.Sc. Programme- B.Sc. Course- Biotechnology (USBT) (Third Year – Sem. V & VI)

(Credit Based Semester and Grading System with effect from the academic year 2018-2019)

TYBSC Biotechnology Course Structure

Course code USBT	Title	Theory /Practical	Marks	Credits	Nos of Lectures & Practical
501	Cell biology	Theory	100	2.5	60
502	Medical Microbiology & Instrumentation	Theory	100	2.5	60
503	Genomes and Molecular Biology	Theory	100	2.5	60
504	Marine Biotechnology	Theory	100	2.5	60
P501+502	Cell biology+ Medical Microbiology & Instrumentation	Practical	100	3.0	72
P503+504	Genomes and Molecular Biology+ Marine Biotechnology	Practical	100	3.0	72
Applied Component	Biosafety	Theory	100	2.0	48
	Biosafety	Practical	100	2.0	48
	TOTAL		800	20	480

Semester V

Course code USBT	Title	Theory/ Practical	Marks	Credits	Nos of Lectures & Practical
601	Biochemistry	Theory	100	2.5	60
602	Industrial Microbiology	Theory	100	2.5	60
603	Pharmacology and Neurochemistry	Theory	100	2.5	60
604	Environmental Biotechnology	Theory	100	2.5	60
P 601-P 602	Biochemistry& Industrial Microbiology	Practical	100	3	72
P 603-P 604	Pharmacology - Neurochemistry and Environmental Biotechnology (50M)+ Project work (50M)	Practical	100	3	72
Applied component	Agribiotechnology	Theory	100	2.0	48
Applied component	Agribiotechnology	Practical	100	2.0	48
-	TOTAL		800	20	480

Teaching pattern:

One (01) Credit would be of thirty- forty (30-40) learning hours; of this more than fifty percent of the time will be spent on class room instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars / workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (60L as class room teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be for 48 min

The names of the reference books provided in the syllabus are for guidance purpose only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

Examination pattern for:

Theory:

- The question paper for the Term End Exam would be of **100 marks** consisting of 5 Questions (20M each), of which one question would be common for all units in the syllabus.
- The question paper would be set for 150 marks including internal options.
- There shall be no internal exam for any paper.

Practical:

- Would be conducted over a period of 3 days; 50M each paper.
- Each student to perform 2 major and 2 minor practical for Sem V and 2 major and project presentation for Sem VI,
- Viva would be conducted during the practical during Sem V; Sem VI would have ONLY project presentation
- Journals would be uniform throughout all the centres; matter would be communicated to all the centres by the syllabus committee.
- Distribution of marks for the experiments carried out during the examination:

Sem V (50M/ paper): Major: 20M; Minor: 10M; Viva: 10M; Journal 10M. Sem VI (50M/paper): Major (x2): 40M; Journal: 10M; Project 50M

The report could be around 25-30 pages with appropriate referencing and formatting. Marks distribution for the project would be as follows: 25M documentation, 15M presentation, 10 M viva and interactions;

- Students would undertake a project for 1-2 months during the last semester for 50 M. The project **should** include **either** of the following:
 - 1. One/ more major instrumentation OR
 - 2. One / more major technique/s required in the field of interest OR
 - 3. Bioinformatics OR
 - 4. Biostatistics

<u>Semester V</u>

Course code USBT	Title	Unit	Topics	Credit	No of Lecture s
		I: Cell cycle	Cell cycle Introduction: Prokaryotic and Eukaryotic- 3 Lectures; The Early Embryonic Cell Cycle and the Role of MPF- 4 Lectures; Yeasts and the Molecular Genetics of Cell-Cycle Control – 4 Lectures; Apoptosis, Cell-Division Controls in Multicellular Animals- 4 Lectures		15
		II: Cell Signalli ng	Cell signalling and signal transduction:Introduction General Principles of Cell Signaling - 3 Lectures ; Signaling via G-Protein-linked Cell-Surface Receptors - 3 Lectures ; Signaling via Enzyme-linked Cell-Surface Receptors - 3 Lectures ; Target-Cell Adaptation, The Logic of Intracellular - 3 Lectures ; Signaling: Lessons from Computer-based "Neural Networks"- 3 Lectures		15
501	Cell Biology	III: Develop mental Biology	Overview of how the modern era of developmental biology emerged through multidisciplinary approaches - 5 Lectures ; Stages of development- zygote, blastula, gastrula, neurula cell fate & commitment – potency- concept of embryonic stem cells, differential gene expression, terminal differentiation ,lineages of three germ layers, fate map - 6 Lectures ; Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development Pattern formation axis specification, positional identification (regional specification), Morphogenetic movements, Model organisms in Developmental biology - 4 Lectures	2.5	15
		IV: Cancer Biology	Cancer: Introduction, Cancer as a Microevolutionary Process - 4 Lectures ; The Molecular Genetics of Cancer - 6 Lectures ; Cancer and Virus Cancer diagnosis and chemotherapy - 5 Lectures		15
		Total			60

- Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA
- Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 5. Developmental Biology; Scott Gilbert; 9th Edition

Course code USBT	Title	Unit	Topics	Credit	No of Lectures
		I: Virology	Introduction to viruses-Position in biological spectrum; Virus properties - 2 Lectures ; General structure of viruses Baltimore Classification and Taxonomy(ICTV) - 2 Lectures ; Cultivation of viruses - 2 Lectures ; Reproduction of ds DNA phages Hepatitis /ss RNA (influenza), animal viruses and plant (TMV)virus - 4 Lectures ; Virus purification and assays - 2 Lectures ; Cytocidal infections and cell damage - 2 Lectures ; Viroids and Prions - 1 Lecture	2.5	15
502	Medical Microbiolog y and Instrumenta tion	II: Chemotherap eutic drugs	Discovery and Design of antimicrobial agents -1 Lecture; Classification of Antibacterial agents, Selective toxicity, MIC, MLC - 2 Lectures Inhibition of cell wall synthesis (Mode of action for): Beta lactam antibiotics: Penicillin, Cephalosporins; Glycopeptides: Wancomycin; Polypeptides: Bacitracin -2 Lectures Injury to Plasma membrane: Polymyxin – 1 Lecture; Inhibition of protein synthesis Aminoglycosides, Tetracyclines Chloramphenicol, Macrolides- Erythromycin- 2 Lectures; Inhibition of Nucleic acid synthesis: Quinolones, Rifampicin, Metronidazole - 2 lectures; Antimetabolites: Sulphonamides, Trimethoprim - 1 lecture; Drug Resistance: Mechanism, Origin and transmission of drug resistance - 1 lecture; Use and misuse of antimicrobial agents - 1 lecture; Antifungal drugs, Antiviral drugs - 2 lectures		15

III: Spectroscopy	Principle, instrumentation, working and applications of: Fluorescence Spectroscopy - 3 Lectures Luminometry - 3 Lectures Light scattering spectroscopy - 3 Lectures Infrared Spectroscopy - 3 Lectures Atomic absorption Spectroscopy - 3 Lectures	15
IV: Bio- analytical techniques	Principle, working and applications of:Affinity chromatography - 2 LecturesIon-exchange chromatography - 2LecturesMolecular (size) exclusionchromatography - 2 Lectures;HPLC - Method development andvalidation- 3 Lectures;Isotopes in Biology: Nature ofradioactivity - 1 Lecture;Detection Techniques using GMcounter, Scintillation counter,autoradiography - 4 Lectures;Applications of Tracer techniques inBiology - 1 Lecture	15
Total		60

- Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press
- 2. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers
- Physical Biochemistry: principles and applications, 2nd edition (2009), David Sheehan, John Wiley & Sons Ltd
- HPLC method validation for pharmaceuticals: a review (2013), Harshad V.
 Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.
- 5. Mim's Medical Microbiology 5th edition
- 6. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill
- Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18th edition
- 8. Medical Microbiology by Patrick Murray 5th edition
- 9. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 10. Understanding Viruses by Teri Shors

USBT P 501-502

3 credits

- Separation of components from a mixture using Affinity chromatography (Kit may be used)
- 2. Separation of components from a mixture using ion exchange chromatography (Kit may be used)
- Separation of components from a mixture using Size exclusion chromatography (Kit may be used)
- 4. HPLC method validation.
- 5. MIC and MLC of any one antibiotic
- 6. Antibiotic sensitivity test using agar cup method
- 7. Antibiotic sensitivity test using paper disc method
- 8. Antibiotic sensitivity test using ditch method.
- 9. Cancer Biology: (Field visit and 2 page report in the journal)
- 10. Chick embryo candling and inoculation methods Demonstration experiment
- 11. Book review (Emperor of all Maladies)

Course Code USBT	Title	Unit	Topics	Credit	No of Lectu res
		I: Genetic engineerin g of plants	Genetic engineering of plants; Methodology. Plant transformation with the Ti plasmid of <i>A.tumefaciens</i> , Ti plasmid derived vector system - 4 Lectures; Transgenic plants: Physical methods of transferring genes to plants : electroporation, microprojectile bombardment, liposome mediated, protoplast fusion- 5 Lectures; Vectors for plant cells - 4 Lectures; Improvement of seed quality protein - 2 Lectures		15
		II: Transgeni c Animals	Transgenic mice- methodology-retroviral method, DNA microinjection, ES method - 5 Lectures ; genetic manipulation with cre-loxP - 2 Lectures ; Vectors for animal cells - 2 Lectures ; Transgenic animals recombination system - 2 Lectures ; Cloning live stock by nuclear transfer - 2 Lectures; Green Fluorescent Protein - 1 Lectures ; Transgenic fish – 1 Lectures		15
503	Genomics and Molecular Biology	III: Tools in Molecular Biology	Cloning vectors-Plasmids (pUC series), Cosmids, phagemids M13, shuttle vectors, YAC vectors, expression vectors pET - 4 Lectures; Gene cloning-Isolation and purification of DNA; Isolation of gene of interest: Restriction digestion, electrophoresis, blotting, cutting, and joining DNA, methods of gene transfer in prokaryotes and eukaryotes - 3 Lectures; Recombinant selection and screening methods: genetic, immunochemical, Southern and Western analysis, nucleic acid hybridization, HART,HRT- 2 Lectures; Expression of cloned DNA molecules and maximization of expression - 2 Lectures; Cloning strategies-genomic DNA libraries, cDNA libraries, chromosome walking and jumping - 4 Lectures	2.5	15
		IV: Gene sequencin g and editing	Maxam Gilbert's method, Sanger's dideoxy method, Automated DNA sequencing, Pyrosequencing - 6 Lectures; Human genome mapping and it's implications in health and disease - 3 Lectures; RNAi, ZNF(Zinc finger nucleases), TALENS(Transcription Activator Like Effector Nucleases), CRISPER/Cas system(Clustered		15
		Total	Regularly Interspersed Repeats) - 6 Lectures		60

- 1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.
- Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.
- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology 3rd Edition S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

Course Code	Title	Unit	Topics	Credit	No. of Lectures
USBT					
		I: Marine Biotech nology- Introduc tion & Biopros pecting	Introduction to Marine Biotechnology- 1 lecture; The marine ecosystem and its functioning: intertidal, estuarine, salt marsh, mangrove, coral reef, coastal &deep sea ecosystems. Hydrothermal vents- 4 lectures; Bioprospecting, Marine Microbial Habitats and Their Biotechnologically relevant Microorganisms- 2 lectures; Methods for Microbial Bioprospecting in Marine Environments - 2 lectures; Biotechnological Potential of Marine Microbes -1 lecture; Bioactive compounds from other Marine Organisms: fungi, Microalgae, Seaweeds, Actinomycetes, sponges - 5 lectures		15
504	Marine Biotech nology	II: Marine Drugs and Enzyme s	Drugs from Marine organisms: Pharmaceutical compounds from marine flora and fauna - marine toxins, antiviral and antimicrobial agents - 4 lectures; Approved Marine Drugs as Pharmaceuticals - 2 lecture; Marine Natural products and its Challenges - 2 lectures; Marine Microbial Enzymes- Marine Extremozymes and Their Significance, Current Use of Marine Microbial Enzymes - 7 lectures.	2.5	15
		III: Marine Function al foods and Nutrace uticals	Marine Functional Foods: Marine Sources as Healthy Foods or Reservoirs of Functional Ingredients -3 lectures; Marine-Derived Ingredients with Biological Properties- 3 lectures; Functional Foods Incorporating Marine-Derived Ingredients -2 lectures; Marine Nutraceuticals : Marine Bioactives as Potential Nutraceuticals, Functional Carbohydrates, Polyunsaturated Fatty Acids- 3 lectures; Carotenoids, Soluble Calcium, Fish Collagen and		15
		IV: Marine Bioreso urces and	Gelatin, Marine Probiotics -4 lectures.Marine Bioresources, Marine SecondaryMetabolites, Marine Proteins, Marine Lipids- 4lectures;Cosmetics from Marine Sources: Scenario ofMarine Sources in the Cosmetic Industry,Cosmetics: Definition and Regulations,		15

	CS	Cosmeceuticals , Target Organs and Cosmetics Delivery Systems , Components of Cosmetics, Major Functions of Some Marine Components in Cosmetics and Cosmeceuticals , Treatments Based on Marine Resources , Products Based on Marine Resources - 11 lectures.	
	Total		60

- Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
- 2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)
- R. S. K. Barnes, R. N. Hughes(auth.)-An Introduction to Marine Ecology, Third Edition-Wiley-Blackwell (1999)
- 4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)
- Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_ Sources, Characterization and Applications-Springer US (2012)
- 6. W. Evans-Trease and Evans Pharmacognosy 15 th ed.-Saunders (2010)

USBT P 503-504

3 credits

- 1. Transformation in *E.coli*.
- 2. Genomic DNA Extraction: Animal cells.
- 3. Restriction enzyme digestion and ligation (Kit may be used).
- 4. Phage titration: Demonstration
- 5. Polymerase chain reaction. Demonstration
- 6. Gradient plate technique
- 7. Bacterial gene expression (Kit may be used).
- 8. Study of any 5 marine bacteria and algae (Macro and micro)
- 9. DPPH assay for antioxidant extracted from marine algae
- 10. Extraction of carotenoids from marine algae/Bacteria/Fungi
- 11. Extraction and estimation of Gelatin / Collagen.
- 12. Extraction of alkaloids from marine organisms and their separation by TLC.

Applied component Biosafety Introduction - 1 lecture Introduction - 1 lecture Biosafety Introduction - 1 lecture; Biological Risk Assessment, Assessment, Hazardous Characteristics of a Agent - 2 lectures; Genetically modified agent hazards - 1 Interver; Cell cultures - 1 lecture; Hazardous Characteristics of Laboratory Procedures - 1 Interver; Potential Hazards Associated with Work Practices - 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Calibration of Laboratory work - 1 lecture; Cell cultures: Collectures; Documentation of Laboratory work - 1 lecture; Collectures; Calibration records - 1 lectures; Documentation of results - 1 12 II: GLP Concept of GLP- 1 lectures; Documentation of results - 1 2.0 III: GLP Concept of Concept of results - 1 2.0 III: GLP Concept of results - 3 2.0 III:	Course	Title	Unit	Topics	Credits	Lectures
Applied componentBiosafetylecture; lecturesPotential Hazards Associated with Work Practices – 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Pathogenic risk and management - 2 lectures1II: GLPConcept of GLP- 1 lectures; Practicing GLP- 1 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture.12III:Microbial Contamination in food and some common microbial contamination ants pharmaceutical products - 4 lectures; Nicrobiological Assays for marmaceutical products - 4 lectures; Regulating fDNA technology -2 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Contemporary issues in Bioethics12			Introducti on to	Biological Risk Assessment, Hazardous Characteristics of an Agent- 2 lectures; Genetically modified agent hazards - 1 lecture; Cell cultures - 1 lecture;		15
Applied componentBiosafetyPracticing Guidelines to GLP - 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture, Audits & Audit reports - 1 lecture.12III: Detection and testing of contamin 				lecture; Potential Hazards Associated with Work Practices – 2 lectures; Safety Equipment and Facility Safeguards - 2 lectures; Pathogenic risk and management - 2 lectures		
III:Microbial Contamination in food and pharma product - 3 lectures; Some common microbial testing of contamin1212121212121212121314151516171718191910101011111212131415151617171819191911111111121213141516171718191919111111111112131414151516171717181919191919191919191911111111111111111111111111111111 <td>Biosafety</td> <td>II: GLP</td> <td>Practicing GLP- 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture; Audits & Audit reports -</td> <td rowspan="3">2.0</td> <td>12</td>		Biosafety	II: GLP	Practicing GLP- 1 lecture; Guidelines to GLP - 2 lectures; Documentation of Laboratory work - 1 lectures; Preparation of SOPs - 2 lectures; Calibration records - 1 lectures; Validation of methods - 1 lectures; Documentation of results - 1 lecture; Audits & Audit reports -	2.0	12
Biosafety inBiotechnology - 2 lectures; Regulating rDNA technology -2Biotechn ologylectures; Regulating food and food ingredients -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures; Contemporary issues in Bioethics		te cc Bi B	Detection and testing of contamin	Microbial Contamination in food and pharma product - 3 lectures ; Some common microbial contaminants - 3 lectures ; Microbiological Assays for pharmaceutical products - 4 lectures ; Regulatory Microbiological testing in		12
– Z IECHIFEN.			Biosafety in Biotechn	Biotechnology - 2 lectures; Regulating rDNA technology -2 lectures; Regulating food and food ingredients -3 lectures; Genetically engineered crops, livestock Bioethics -3 lectures;		12

- Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
- Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
- Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

PRACTICALS

Applied Component- Biosafety 2 Credits

48hours

- 1. Validation of micropipette, measuring cylinders, colorimeters
- 2. Calibration of pH meter and weighing balance
- 3. Vitamin B12 bioassay
- 4. Testing for adulterants in food; ex. Starch in milk
- 5. Making SOP for any 2 major laboratory instruments
- 6. Sterility of injectables

Semester VI

USBT Protein structure: Protein Tertiary and Quaternary Structures -2 Lectures; Protein Function and Folding – 3 Lectures; Protein Function: Reversible Binding of a Protein Function: Reversible Binding of a Protein Function: Reversible Binding of a Protein s a Ligand: Oxygen-Binding Proteins -2 Lectures; Complementary Interactions between Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors -3 Lectures; Protein purification - 4 Lectures; Starch and sucrose in Plants -4 Lectures; Biosynthesis and regulation of Cholesterol, Atheroselerosis - 5 Lectures. 15 601 Biochemistry Mechanism of action of group I and II hormones - 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Posterior Pituitary gland – oxeytocin and vasopressin -1 Lecture; Parathyroid gland – PTH -1 Lecture; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Panereas – insulin and glucagon - 2 Lectures; Meala Gonads – estrogen and progesterone -2 Lectures; Mala convole – itercture: 15	Course Code	Title	Unit	Topics	Credits	Lectu res
601BiochemistryCarbohydrate biosynthesis and its regulation: Peptidoglycan in Bacteria -2 Lectures; Starch and sucrose in Plants -4 Lectures; Glycogen in Animals - 4 Lectures; Biosynthesis and regulation of Cholesterol, Atherosclerosis - 5 Lectures.15601BiochemistryMechanism of action of group I and II hormones-1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Posterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Thyroid gland - Thyroxine, calcitonin - 2 Lectures; Parathyroid gland - PTH -1 Lecture; Adrenal medulla - epinephrine and norepinephrine -1 Lecture; Paracreas - insulin and glucagon - 2 Lectures; Female Gonads - estrogen and progesterone - 2 Lectures;15	USBT		Protein	Quaternary Structures -2 Lectures; Protein Denaturation and Folding – 3 Lectures; Protein Function: Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins – 2 Lectures; Complementary Interactions between Proteins and Ligands: Immunoglobulins – 1 Lecture; Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors -3 Lectures;		15
601 Biochemistry Mechanism of action of group I and II hormones- 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Anterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Posterior Pituitary gland – oxcytocin and vasopressin -1 Lecture; Thyroid gland – Thyroxine, calcitonin - 2 Lectures; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Adrenal cortex – Glucocortocoids - 1 Lecture; Pancreas – insulin and glucagon - 2 Lectures; Female Gonads – estrogen and progesterone - 2 Lectures; 15			-	Carbohydrate biosynthesis and its regulation: Peptidoglycan in Bacteria -2 Lectures; Starch and sucrose in Plants -4 Lectures; Glycogen in Animals - 4 Lectures; Biosynthesis and regulation of Cholesterol,		15
Placenta – hCG - 1 Lecture.	601	Biochemistry		hormones- 1 Lecture; Structure, storage, release, transport, biochemical functions and disorders associated with hormones secreted by Hypothalamus -1 Lecture; Anterior Pituitary gland - GH, stimulating hormones) -1 Lecture; Posterior Pituitary gland – oxcytocin and vasopressin -1 Lecture; Thyroid gland – Thyroxine, calcitonin - 2 Lectures; Parathyroid gland – PTH -1 Lecture; Adrenal medulla – epinephrine and norepinehprine -1 Lecture; Adrenal cortex – Glucocortocoids - 1 Lectures; Pancreas – insulin and glucagon - 2 Lectures; Female Gonads – estrogen and progesterone - 2 Lectures; Male gonads – testosterone- 1 Lecture;	2.5	15

Nutrition	Dietary sources, bioactive form, functions and disorders associated with fat soluble (A D E K) and water soluble vitamins- 7 Lectures; Minerals - physiological and biochemical functions of principal and trace elements 7 Lectures; Malnutrition – Over nutrition (obesity) and PEM (Kwashiorkor and Marasmus)- 1 Lecture.	15
Total		60

- Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox *W.H. Freeman* and Company, New York.
- 2. Biochemistry , 4th edition (2010), Voet and Voet, John Wiley and sons, USA
- 3. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.
- Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 5. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.

Course Code	Title	Unit	Topics	Credit	No. of Lectures
USBT		I: Dairy technology	Milk: Normal flora, changes in raw milk - 2 lectures; Enumeration - 1 lecture; Factors affecting bacteriological quality - 1 lecture; Dairy technology Preservation methods - 2 lectures; Pasteurization- 1 lecture; Starter Cultures - 2 lectures; Fermented products-Production process and spoilage of Cheese: Swiss and Cheddar - 2 lectures; Butter - 2 lectures; Yogurt - 1 lectures and Buttermilk - 1 lecture.		15
602	Industrial Microbiology	II: Down-stream Processing (DSP)	Introduction of DSP - 2 lectures; Foam separation - 1 lecture; Types of Precipitation - 1 lecture; Filtration 2 lectures, Centrifugation - 1 lecture; Chromatography in DSP - 2 lectures; Cell disruption- physical and chemical methods - 2 lectures; Solvent recovery, Membrane processes - 1 lecture; Drying - 1 lecture; Crystallization and Whole broth processing - 2 lectures.	2.5	15
		III: Fermentation process	Introduction to Inoculum development - 2 lectures; Bacterial and fungal inoculum development with one example each - 3 lectures, scale up, scale down - 2 lectures; Production of: Streptomycin - 1 lecture; Protease - 1 lecture; Mushroom - 1 lecture; Glutamic acid - 1 lecture; Lysine - 1 lecture, ethanol production 1 lecture Semi-synthetic Penicillin 1 lecture, Biotransformation - 1 lecture.		15
		IV: QA-QC	Concept of GMP- 1 Lectures; Requirements of GMP implementation - 2 Lectures; Documentation of GMP practices - 2 Lectures; Regulatory certification of GMP - 2 Lectures; Quality Control (QC): Concept of QC - 2 Lectures; Requirements for implementing QC -		15

		2 Lectures; QA concepts: Concept of	
		QA - 2 Lectures; Requirements for	
		implementing - 2 Lectures.	
	Total		60

- Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition
- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Pharmaceutical Microbiology by Russel and Hugo

USBT P 601-602

3 credits

- 1. Estimation of Milk protein-Pynes method
- 2. Microbial analysis of Milk by MBRT and RRT
- 3. Phosphatase test in Milk
- 4. DMC of milk sample
- 5. Isolation of Normal flora from Milk and curd
- 6. Determination of blood glucose levels for detection of diabetes mellitus.
- 7. Determination of serum cholesterol (total, HDL and LDL ratio)
- 8. Estimation vitamin C by DCPIP method from food samples.

Course Code USBT	Title	Unit	Topics	Credits	No of Lectures
		I: General principles of Pharmacolo gy	Mechanism of drug action - 2 Lectures; drug receptors and biological responses - 2 Lectures; second-messenger systems, the chemistry of drug-receptor binding - 2 Lectures; dose-response relationship: therapeutic index - 3 Lectures; ED, LD, - 2 Lectures; Potency and Intrinsic Activity - 2 Lectures; Drug antagonism - 2 Lectures.		15
	Basic phar	II: Drug Absorption and Distribution	Absorption of drugs from the alimentary tract - 2 Lectures; factors affecting rate of gastrointestinal absorption - 2 Lectures; absorption of drugs from lungs - 1 Lecture; skin - 1 Lecture; absorption of drugs after parenteral administration factors influencing drug distribution - 2 Lectures; binding of drugs to plasma proteins - 2 Lectures; Physiological barriers to drug distribution - 3 Lectures.		15
603	macol ogy and Neuro chemi stry	III: Basic Toxicology and Regulatory Toxicology	Background Definitions - 1 Lectures; Causation: degrees of certainty Classification - 1 Lectures; Causes Allergy in response to drugs Effects of prolonged administration: chronic organ toxicity - 2 Lectures; Adverse effects on reproduction - 1 Lecture; <u>Poisons</u> : Deliberate and accidental self-poisoning Principles of treatment Poison-specific measures General measures - 2 Lectures; Specific poisonings: cyanide, methanol, ethylene glycol, hydrocarbons, volatile solvents, heavy metals, - 3 Lectures; herbicides and pesticides, - 2 Lectures; biological substances (overdose of medicinal drugs is dealt with under individual agents) - 1 Lecture; Incapacitating agents: drugs used for torture - 1 Lecture; Nonmedical use of drugs - 1 Lecture.	2.5	15
		IV: Neurochemi stry	Anatomy and functioning of the brain - 2 Lectures; Neuronal pathways - 2 Lectures;		15

		Propogation of nerve impulses - 2 Lectures; Neuronal excitation and inhibition - 3 Lectures; Synapses and gap junctions - 3 Lectures; Action of Neuro toxins and neurotransmitters - 3 Lectures.	
	Total		60

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier

Course Code USBT	Title	Unit	Topics	Credits	No of Lecture s
		I: Renewab le sources of energy	Energy sources renewable – solar energy, wind power, geothermal energy and hydropower, biomass energy - 5 Lectures ; Biogas technology- biogas plant & types, biodigester. Biogas- composition, production and factors affecting production, uses - 5 Lectures ; Biofuels – ethanol production. Microbial hydrogen production Biodiesel, Petrocrops - 5 Lectures ;		15
604	Environ mental Biotechn ology	II Industrial effluent treatment	Biological processes for industrial effluent treatment, aerobic biological treatment- activated sludge process, CASP, advanced activated sludge processes (any two) Biological filters, RBC, FBR - 5 Lectures; Anaerobic biological treatment- contact digesters, packed bed reactors, anaerobic baffled digesters, UASB - 3 Lectures; Solid waste treatment - 2 Lectures; pollution indicators & biosensors - 2 Lectures; biodegradation of xenobiotics- persistent compounds, chemical properties influencing biodegradability, microorganisms in biodegradation - 2 Lectures; Use of immobilized enzymes or microbial cells for treatment - 1 Lecture.	2.5	15
		III Wastewat er treatment	Wastewater treatment- introduction, biological treatment, impact of pollutants on biotreatment, use of packaged organisms and genetically engineered organisms in waste treatment - 5 Lectures; Heavy metal pollution – sources, microbial systems for heavy metal accumulation, techniques used for heavy metal removal - 5 Lectures; biosorption by bacteria, fungi and algae, factors affecting biosorption limitations of biosorption - 5 Lectures.		15
		IV Hazardou s waste managem ent	Biodegradation of waste from tanning industry - 2 Lectures; petroleum industry - 2 Lectures; paper & pulp industry - 2 Lectures; Dairy - 2 Lectures; Distillery - 2 Lectures; Dye - 1 Lecture; Antibiotic industry - 2 Lectures; Removal of oil spillage & grease deposits - 2 Lectures.		15
		Total			60

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International
- 3. Environmental Biotechnology (Industrial pollution management) S.D. Jogdand Himalaya Publishing House

USBT P 603-604

3 credits

- 1. LD 50, ED 50 evaluation using suitable models e.x daphnia
- 2. Study the effect of heavy metals on the growth of bacteria.
- 3. Determination of Total Solids from an effluent sample.
- 4. Study of physico-chemical (pH, color, turbidity, BOD, COD) parameters of any one industrial effluent sample
- 5. Estimation of chromium from Effluents (Demonstration)
- 6. Visit to ETP/ CETP

Course	Title	Unit	Topics	Credit	No. of Lectures
Applied component	Agri Biotechnology	I: Precision Agriculture and Agriculture systems	Introduction to Agriculture and Agriculture systems- 1 Lecture; Green house Technology Types of green house, importance, functions and features of green house, Design criteria and calculation -2 Lectures; Construction material, covering material and its characteristics, growing media, green house irrigation system. nutrient management -3 Lectures; Greenhouse heating, cooling and shedding and ventilation system, Computer controlled environment - 3 Lectures;, Phytotrons, fertigation and roof system -1 Lecture; Precision Cultivation- tools, sensors for information acquisition -2 Lectures.	2	12
		II: Plant stress biology	Abiotic stress –Physiological and molecular responses of plants to water stress, salinity stress, temperature stress – heat and cold, Photooxidative stress, stress perception and stress signaling pathways, Ionic and osmotic homeostasis, reactive oxygen species scavenging- 4 Lectures; Biotic stress - plant interaction with bacterial, viral and fungal pathogens, plant responses to pathogen– biochemical and molecular basis of host-plant resistance , toxins of fungi and bacteria , systemic and induced resistance –pathogen derived resistance, signalling - 8 Lectures.		12
		III: Molecular Markers in Plant Breeding	Genetic markers in plant breeding Classical markers, DNA markers (RFLP, RAPD, AFLP, SSR, SNP)- 4 Lectures; Application of Molecular Markers to Plant Breeding [quantitative trait locus (QTL) mapping] - 4 Lectures; Plant DNA Barcoding- Barcoding Markers (matK, rbcl, ITS, tmH- psbA), steps, recent advances, Benefits, Limitations - 4 Lectures.		12

Image: Microorganisms-Phosphate-Solubilizing Microbes (Phytohormones and Cytoh Induced Systemic Resistand Lectures;IV:IV:Plant Growth Promotion by F Biofertilizers and BiopesticidesBiopesticidesMicrobial Inoculants Im Carriers, and Applic Monoculture and Co-co Inoculant Formulations Bioce	trogen noting PSM), kinins, ce- 2 Fungi rrhizae nocula, ations, culture ontrol, oculant acillus
---	---

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science Of Sustainable Agriculture, Second Edition-CRC Press (2018)
- Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_Prospects for the 21st Century-Academic Press (2011)

Applied component-Agri-Biotechnology

USBT P 603-604

2 credits

- 1. RAPD analysis demonstration experiment
- 2. Isolation of Rhizobium
- 3. Isolation of Azotobacter
- 4. Isolation of Phosphate solubilising bacteria
- 5. Study of effect of abiotic stress on plants.
- 6. Rapid screening tests for abiotic stress tolerance (drought, PEG, Mannitol &salinity NaCl)
- 7. Estimation of antioxidants and antioxidant enzymes Ascorbate, Catalase, and Peroxidase
- 8. Visit to green house facility and submission of field visit report.